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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I'm looking forward to future milestones.

With that in mind I've introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))



Chapter 1

Interval Arithmetic

Lambov [Lambov 06] defines a set of useful formulas for computing intervals using the IEEE-
754 floating-point standard.

The first thing to note is that IEEE floating point defaults to round-to-nearest. However,
Lambov sets the rounding mode to round to —oco. Computing lower bounds directly uses
the hardware floating point operations but computing upper bounds he uses the identity

so that the upper bound of the pair of bounds is always negated. That is,

T = [Ev E] = <£a _f>
Given that convention

e the sum of x and y is evaluated by
(V(z+y),-V(-T 7))

e changing the sign of an interval x is achieved by swapping the two bounds, that is
<_Ev §>

e joining two intervals (that is, finding an interval containing all numbers in both, or
finding the minimum of the lower bounds and the maximum of the higher bounds) is

performed as
(min(z,y), —min((—T), (=7)))

Lambov defines operations which, under the given rounding condition, give the tightest
bounds.
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1.1 Addition

z+y=[z+yT+7 S(Viz+y) - V(-T)+ (-7)))

The negated sign of the higher bound ensures the proper direction of the rounding.
1.2 Sign Change

—z = [-7,—z] = (-7, 2)

This is a single swap of the two values. No rounding is performed.

1.3 Subtraction

z—y=[z-7,T—y] S(Viz+(-7),-V((-7) +))

Subtraction is implemented as = + (—y).

1.4 Multiplication

zy = [min(zy, 2, Ty, TY), maz(zy, 27, Ty, TY) |

The rounding steps are part of the operation so all 8 multiplications are required. Lambov
notes that since

A(V(r)+¢€) > A(r)

for € being the smallest representable positive number, one can do with 4 multiplications at
the expense of some accuracy.

In Lambov’s case he makes the observation that

[min@g, zy), max(TYy, g@)} ,ifo<z
Ty = [min(@@, zy), max(Ty, gy)} ,if 2 <0
|min(zy, Ty), max(Ty, zy)| , if 2 <T

from which he derives the formula actually used

zy C (min(V(az), V(b(=T))), —=min(V(c(=T)), V(dz)))
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where
y ifo<z

otherwise

y -7) <0
Y 0therw1se
(-y) f0<z

d = -y otherwise

b y 1f -Z) <0
o otherw1se

which computes the rounded results of the original multiplication formula but achieves better
performance.

1.5 Multiplication by a positive number

If one of the numbers is known to be positive (e.g. a constant) then
if z > 0 then zy = [min(zy, Ty), maz(Ty, 27)]

This formula is faster than the general multiplication formula.

1.6 Multiplication of Two Positive Numbers

If both multiples are positive simply change the sign of the higher bound on one of the
arguments prior to multiplication. If one of the numbers is a constant this can be arranged
to skip the sign change.

1.7 Division

Division is an expensive operation.

x . r Yy T T r r T T
—=mnm\—,=,—,=-|,mar|{—,—,—,—

which is undefined if 0 € y. To speed up the computation Lambov uses the identity
z 1

2y
Y

Lambov does a similar analysis to improve the overall efficiency.

N [mzn(% %),max(%,%)} , if0<y<y

g exception if y<0<7y

” o Y
[mzn(i %),max(i, %)} , fy<y<o0
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The formula he uses is

< (7 (G () e (7(55) 7 ()

where
z if (-7) <0
@ = —(—%) otherwise
b (-z) if0<y

—x otherwise

1.8 Reciprocal

ral= () ()

which is undefined if 0 € x. Lambov implements this by checking for zero, followed by
division of —1 by the argument and swapping the two components.

1.9 Absolute Value
|.’L‘| = [mam(ga -, O)’ maw(_gv E)} = (max(O,g, (—f)), _min(£7 (_f)»

1.10 Square

o? = |z]|a]

using multiplication by positive numbers, mentioned above.

1.11 Square Root

Ve = |V va|

which is defined if 0 < z

Lambov notes that this formula has a rounding issue. He notes that since

A(r) < =V(=e=V(r))
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he uses the formula

e V(ﬁ) =V (V) itV (v (V) =)

vV (vz),V (V (—e - —(—E))>> , otherwise

where € is the smallest representable positive number.

The first branch of this formula is only satisfied if the result of \/—(—7) is exactly repre-

sentable, in which case
w (v=Fm) - v (=)

otherwise the second branch of the formula adjusts the high bound to the next representable
number. If tight bounds are not required the second branch is always sufficient.

If the argument is entirely negative, the implementation will raise an exception. If it contains
a negative part, the implementation will crop it to only its non-negative part to allow that
computations such as v/0 ca be carried out in exact real arithmetic.
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Chapter 2

Integration [Bronstein 98b]

An elementary function of a variable x is a function that can be obtained from the rational
functions in z by repeatedly adjoining a finite number of nested logarithms, exponentials,
and algebraic numbers or functions. Since \/—1 is elementary, the trigonometric functions
and their inverses are also elementary (when they are rewritten using complex exponentials
and logarithms) as well as all the “usual” functions of calculus. For example,

sin(z + tan(z® — Va3 — 2 + 1)) (2.1)

is elementary when rewritten as

1— 62\/jl(x37\/x37x+1)

AL T Py LY
(e —e ) where t = PR e P s

2

This tutorial describes recent algorithmic solutions to the problem of integration in finite
terms: to decide in a finite number of steps whether a given elementary funcction has an
elementary indefinite integral, and to compute it explicitly if it exists. While this problem
was studied extensively by Abel and Liouville during the last century, the difficulties posed
by algebraic functions caused Hardy (1916) to state that “there is reason to suppose that no
such method can be given”. This conjecture was eventually disproved by Risch (1970), who
described an algorithm for this problem in a series of reports [Ostrogradsky 1845, Risch 68,
Risch 69a, Risch 69b]. In the past 30 years, this procedure has been repeatedly improved,
extended and refined, yielding practical algorithms that are now becoming standard and are
implemented in most of the major computer algebra systems. In this tutorial, we outline the
above algorithms for various classes of elementary functions, starting with rational functions
and progressively increasing the class of functions up to general elementary functions. Proofs
of correctness of the algorithms presented here can be found in several of the references, and
are generally too long and too detailed to be described in this tutorial.

Notations: we write x for the variable of integration, and / for the derivation d/dz.
Z,Q,R,and C denote respectively the integers, rational, real and complex numbers. All
fields are commutative and, except when mentioned explicitly otherwise, have characteristic
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0. If K is a field, then K denotes its algebraic closure. For a polynomial p, pp(p) denotes
the primitive part of p, i. e. p divided by the gcd of its coefficients.

2.1 Rational Functions

By a rational function, we mean a quotient of polynomials in the integration variable x.
This means that other functions can appear in the integrand, provided they do not involve
x, hence that the coeflicients of our polynomials in = lie in an arbitrary field K satisfying:
Va € K, o' =0.

The full partial-fraction algorithm

This method, which dates back to Newton, Leibniz, and Bernoulli, should not be used in
practice, yet it remains the method found in most calculus tests and is often taught. Its
major drawback is the factorization of the denominator of the integrand over the real or
complex numbers. We outline it because it provides the theoretical foundations for all the
subsequent algorithms. Let f € R(z) be our integrand, and write f = P + A/D where
P,A,D € R[z], gcd(A, D) = 1, and deg(A) <deg(D). Let

D= cH(a: —a;)% H(x2 + bz + ¢;)i
i=1 j=1

be the irreducible factorization of D over R, where c, the a;’s, b;’s and ¢;’s are in R and the
e;’s and f;’s are positive integers. Computing the partial fraction decomposition of f, we
get

fi

P Bjrx J
D) M )
i=1 k= 1 j=1k=1 J
where the A;’s, Bji’s, and Cj’s are in R. Hence,
R IES 59 o) = us of oy g TE1ST
- Do) (@oa) j=1k=1 x2+bx+c])

Computing [ P poses no problem (it will for any other class of functions), and for the other

terms we have
Az’k o Alk(l' — ai)l’k/(l — k) ifk>1 (2 2)
(x—a;))k | Ailog(z —a;) if k=1 )

and, noting that b% — 4¢; < 0 since % 4 b;x + ¢; is irreducible in R[x].

arctan

’/46]‘ 7b? 4Cj 7()3

B, ; B, 2C;1 — b; B, 2x + b,
[ Pty 4 2 (2
J J
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and for k > 1,

/ Bjkx—i—Cjk _ (2Cjk —bijk)iL'-i-bjCjk — 2Cijk
(2 + bjz + ¢j)F (k —1)(4cj — 03) (22 + bjz + c;)k~1
+/ (2k —3)(2Cj — bjBji)

(k — 1)(46] — b?)(:ﬂ2 + bjl‘ + Cj)k71

This last formula is then used recursively until k£ = 1.

An alternative is to factor D linearly over C: D = [[{_, (2 — o;)%, and then use 2.2 on each

term of
f= P+ZZ TR (2.3)

i=1 j=1
Note that this alternative is applicable to coefficients in any field K, if we factor D linearly
over its algebraic closure K, and is equivalent to expanding f into its Laurent series at all
its finite poles, since that series at r = o; € K is
A, A; A;
% cee i2 5 + il
(x — ;) (x — ;) (x — ;)

f=

where the A;;’s are the same as those in 2.3. Thus, this approach can be seen as expanding
the integrand into series around all the poles (including oo), then integrating the series
termwise, and then interpolating for the answer, by summing all the polar terms, obtaining
the integral of 2.3. In addition, this alternative shows that any rational function f € K(x)
has an elementary integral of the form

/f = v+ cylog(ur) + -+ + ¢m log(um,) (2.4)

where v, u1,...,u, € K(z) are the rational functions, and cy,...,c,, € K are constants.
The original Risch algorithm is essentially a generalization of this approach that searches for
integrals of arbitrary elementary functions in a form similar to 2.4.

The Hermite reduction

The major computational inconvenience of the full partial fraction approach is the need
to factor polynomials over R, C, or K, thereby introducing algebraic numbers even if the
integrand and its integral are both in Q(z). On the other hand, introducing algebraic
numbers may be necessary, for example it is proven in [Risch 69a] that any field containing
an integral of 1/(z% 4+ 2) must also contain /2. Modern research has yielded so-called
“rational” algorithms that

e compute as much of the integral as possible with all calculations being done in K (x),
and

e compute the minimal algebraic extension of K necessary to express the integral
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The first rational algorithms for integration date back to the 19" century, when both Hermite
[Hermite 1872] and Ostrogradsky [Ostrogradsky 1845] invented methods for computing the v
of 2.4 entirely within K (). We describe here only Hermite’s method, since it is the one that
has been generalized to arbitrary elementary functions. The basic idea is that if an irreducible
p € K[x] appears with multiplicity & > 1 in the factorization of the denominator of the
integrand, then 2.2 implies that it appears with multiplicity £ — 1 in the denominator of the
integral. Furthermore, it is possible to compute the product of all such irreducibles for each k
without factoring the denominator into irreducibles by computing its squarefree factorization,
i.e a factorization D = D;D3--- D™, where each D; is squarefree and ged(D;, D;) = 1
for i # j. A straightforward way to compute it is as follows: let R = ged(D, D’), then
R=DyD3---D" ' so D/R=D1Dy---D,, and gcd(R, D/R) = D5 - - D,,,, which implies
finally that

_ D/R

~ gcd(R, D/R)

Computing recursively a squarefree factorization of R completes the one for D. Note that
[Yun 76] presents a more efficient method for this decomposition. Let now f € K(x) be our
integrand, and write f = P+ A/D where P, A, D € K[x], ged(4, D) =1, and

deg(A) < deg(D). Let D = D1D3--- D™ be a squarefree factorization of D and suppose
that m > 2 (otherwise D is already squarefree). Let then V = D,, and U = D/V™. Since
ged(UV’, V) = 1, we can use the extended Euclidean algorithm to find B,C € KJz| such
that

D,

A
—— =BUV'+CV
1—-m
and deg(B) < deg(V'). Multiplying both sides by (1 —m)/(UV™) gives

A (1-m)BV' n (1-m)C
gvm - ym uym-1
so, adding and subtracting B’/V™~! to the right hand side, we get
A (B (m-1)BV N (1-m)C-UB
uvm uvm—1

VnL—l ym
and integrating both sides yields

/ A B +/wyﬁmC—UR
Uuym - ym—1 Uym-1

so the integrand is reduced to one with a smaller power of V' in the denominator. This process
is repeated until the denominator is squarefree, yielding g,h € K(x) such that f = ¢ + h
and h has a squarefree denominator.

The Rothstein-Trager and Lazard-Rioboo-Trager algorithms

Following the Hermite reduction, we only have to integrate fractions of the form f = A/D
with deg(A) < deg(D) and D squarefree. It follows from 2.2 that

/f = iai log(x — )
i=1
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where the a;’s are the zeros of D in K, and the a;’s are the residues of f at the a;’s. The
problem is then to compute those residues without splitting D. Rothstein [Rothstein 77]
and Trager [Trager 76] independently proved that the «;’s are exactly the zeros of

R = resultant, (D, A — tD’) € K|t] (2.5)

and that the splitting field of R over K is indeed the minimal algebraic extension of K
necessary to express the integral in the form 2.4. The integral is then given by

/% => ) alog(ged(D, A~ aD")) (2.6)

=1 a|R;(a)=0

where R =[]\, R{" is the irreducible factorization of R over K. Note that this algorithm
requires factoring R into irreducibles over K, and computing greatest common divisors in
(K[t]/(R;))[z], hence computing with algebraic numbers. Trager and Lazard & Rioboo
[Lazard 90] independently discovered that those computations can be avoided, if one uses
the subresultant PRS algorithm to compute the resultant of 2.5: let (Rg, Ry, ... Rx # 0,0,...)
be the subresultant PRS with respect to z of D and A —tD’ and R = Q1Q3...Q™ be a
squarefree factorization of their resultant. Then,

Z alog(ged(D, A —aD")) =
a|lQi(a)=0

> al@(a)=0 @ 108(D) if i = deg(D)
> 010 (a)=0 @ 108(PP, (Ry, ) (a, )  where deg(Ry,) = 4,1 < k; <n
if © < deg(D)

Evaluating pp, (Rk;) at ¢ = a where a is a root of @Q; is equivalent to reducing each coeffi-
cient with respect to z of pp, (Rg,) module @;, hence computing in the algebraic extension
K|[t]/(Q;). Even this step can be avoided: it is in fact sufficient to ensure that @Q; and the
leading coefficient with respect to x of Ry, do not have a nontrivial common factor, which
implies then that the remainder by @Q; is nonzero, see [Mulders 97] for details and other
alternatives for computing pp, (R, )(a, x)

2.2 Algebraic Functions

By an algebraic function, we mean an element of a finitely generated algebraic extension
E of the rational function field K(z). This includes nested radicals and implicit algebraic
functions, not all of which can be expressed by radicals. It turns out that the algorithms
we used for rational functions can be extended to algebraic functions, but with several
difficulties, the first one being to define the proper analogues of polynomials, numerators
and denominators. Since E is algebraic over K (), for any a € E, there exists a polynomial
p € Klz|[y] such that p(x,a) = 0. We say that o € F is integral over K|[z] if there is a
polynomial p € K|z|[y], monic in y, such that p(x,«a) = 0. Integral elements are analogous



12 CHAPTER 2. INTEGRATION [?]

to polynomials in that their value is defined for any = € K (unlike non-integral elements,
which must have at least one pole in K). The set

Ok[2) = {a € E such that o is integral over K[x]}

is called the integral closure of K|z] in E. It is a ring and a finitely generated K[z]-module.
Let a € E* be any element and p = >, a;y* € K [z][y] be such that p(z, @) = 0 and a,, # 0.
Then, ¢(z,a,y) = 0 where ¢ = y™ + Z:Zf)l a;a™ "1y’ is monic in y, S0 any € Oxlz)- We
need a canonical representation for algebraic functions similar to quotients of polynomials
for rational functions. Expressions as quotients of integral functions are not unique, for
example, v/z/x = x/\/x. However, F is a finite-dimensional vector space over K (x), so let
n=[E:K(z)] and w = (wy,...,w,) be any basis for E over K(z). By the above remark,
there are ay,...,a, € K(x)* such that a;w; € Okl for each 4. Since (ajwy, ..., a,wy) is
also a basis for F over K(x), we can assume without loss of generality that the basis w is
composed of integral elements. Any a € E can be written uniquely as o = > | fw; for
fi,-.., fn € K(z), and putting the f;’s over a monic common denominator D € K|[z], we
get an expression

_ A1w1++Anwn

N D
where Ay,..., A, € K[z] and ged(D, Ay, ..., A,) = 1. We call 31" | Ajw; € Ok, and
D € K]|z] respectively the numerator and denominator of a with respect to w. They are
defined uniquely once the basis w is fixed.

The Hermite reduction

Now that we have numerators and denominators for algebraic functions, we can attempt
to generalize the Hermite reduction of the previous section, so let f € E be our integrand,
w = (wi,...,w,) € Ogpy" be a basis for E over K(z) and let Y7 Ajw; € Ok, and
D € K|x] be the numerator and denominator of f with respect to w, Let D = D1D3... D"
be a squarefree factorization of D and suppose that m > 2. Let then V = D,, and U =
D/V™ and we ask whether we can compute B = ZZL:I Biw; € Oy and h € E such that

deg(B;) < deg(V) for each 1,
S Aw B /
= = h 2.7

/ UVm Vm71 + ( )

and the denominator of h with respect to w has no factor of order m or higher. This turns
out to reduce to solving the following linear system

for f1,..., fn € K(x), where

Wi
Vm—l

Indeed, suppose that 2.8 has a solution fi,...,f, € K(z), and write f; = T;/Q, where
Q,T,...,T, € K[x] and ged(Q, T4, . .., T,) = 1. Suppose further that ged(Q, V) = 1. Then,

SZ-:UVT"< )/ for1<i<n (2.9)
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we can use the extended Euclidean algorithm to find A, R € K|[z] such that AV + RQ =1,
and Euclidean division to find Q;, B; € K[x] such that deg(B;) < deg(V) when B; # 0 and
RT; =VQ; + B; for each i. We then have

741_ Biwi !
h = f_<2lv7ln—1 >

- el S B S RT V) ()
i=1

2oy Aiwi  RY TS - wi \' iy Biwi
+V Z Qi (Vm—l ) o
i=1

gvm  yym ym—1

(1 - RQ) I, Aiw; 4 Dim Qiw; v’ Dimy Qiw _ 2oy Biw

= Uym Vvm-2 (m—1) Vm—1 ym—1
i Adwi 3 ((m = DV'Qi + Bjw, n i1 Qv
ygym-1 ym—1 Vm—2

Hence, if in addition the denominator of h has no factor of order m or higher, then B =
S, Biw; € O K[z] and h solve 2.7 and we have reduced the integrand. Unfortunately, it
can happen that the denominator of h has a factor of order m or higher, or that 2.8 has no
solution in K (z) whose denominator is coprime with V', as the following example shows.

Example 1 Let E = K(x)[y]/(y* + (2® + 2)y — 2?) with basis w = (1,y,y%,y3) over K(x)
and consider the integrand

) Wq
[=@ =@ eF
We have D = 2%, so U = 1,V =z and m = 2. Then, S; = 2%(1/z) = -1,

/
s - )
x
24(1 — 22)y3 + 322(1 — 2)y? — (92 + 4523 + 20922 + 63z + 18)y — 18z (23 + 22 — 2z — 1)
27x% + 10823 4 4182 + 108z + 27

5= (%)

642(1 — 2)y® + 9(z* + 223 — 22 — 1)y? + 122(23 + 22 — 2 — 1)y + 4822 (1 — 2?)
27z + 10823 + 41822 + 108z + 27

and

)

(272% + 8123 4 20922 + 272)y3 + 18x(23 + 2% — x — 1)y? + 2422 (2% — 1)y + 9623(1 — z)
2724 4+ 10823 + 41822 + 108z + 27
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so 2.8 becomes

f1 0
M ﬁ, = 8 (2.10)
Ja 1
where
1 —18x(m3-;w2—w—1) 489:2(;—w2) 96w3§71—w)
" 0 —(9m4+45x3+2F09x2+63z+18) 12w(13+;2—:v—1) 24902(;2—1)
- 0 32$(;—w) 9(a:4+2w;—2z—1) 18m(z3+;2—m—1)
0 24(1—2?%) 64x(1—x) (27x* 48125342092 +27x)
F F F

and F = 27z* + 10822 + 41822 + 108z + 27. The system 2.10 admits a unique solution
fi=fa=0,f3=-2and fy = (x + 1)/x, whose denominator is not coprime with V', so the
Hermite reduction is not applicable.

The above problem was first solved by Trager [Trager 84], who proved that if w is an integral
basis, i.e. its elements generate O, over K[z], then the system 2.8 always has a unique
solution in K (x) when m > 1, and that solution always has a denominator coprime with V.
Furthermore, the denominator of each w; must be squarefree, implying that the denominator
of h is a factor of FUV™~! where F € K|[z] is squarefree and coprime with UV. He also
described an algorithm for computing an integral basis, a necessary preprocessing for his
Hermite reduction. The main problem with that approach is that computing the integral
basis, whether by the method of [Trager 84] or the local alternative [van Hoeij 94], can be
in general more expansive than the rest of the reduction process. We describe here the lazy
Hermite reduction [Bronstein 98], which avoids the precomputation of an integral basis. It
is based on the observation that if m > 1 and 2.8 does not have a solution allowing us to
perform the reduction, then either

e the S;’s are linearly dependent over K (x), or

e 2.8 has a unique solution in K (z) whose denominator has a nontrivial common factor
with V', or

e the denominator of some w; is not squarefree

In all of the above cases, we can replace our basis w by a new one, also made up of integral
elements, so that that K[z]-module generated by the new basis strictly contains the one
generated by w:

Theorem 1 ([Bronstein 98]) Suppose that m > 2 and that {S1,...,S,} as given by 2.9
are linearly dependent over K(z), and let Ty,...,T, € K[z] be not all 0 and such that
S T;S; = 0. Then,

U n
wo = 77 ZTiwi € Ok

i=1

Furthermore, if ged(Th,...,T,) =1 then wy ¢ KlxJwy + - -+ + K[x]w,,.



2.2. ALGEBRAIC FUNCTIONS 15

Theorem 2 ([Bronstein 98]) Suppose that m > 2 and that {S1,...,S,} as given by 2.9
are linearly independent over K (x), and let Q, T, ..., T, € K[z] be such that

n 1 n
> Awi ==Y TS,
i=1 Qi
Then,

U(V/ged(V,Q)) 5

= T"L ) o T
0= v, q) 2 T € O

Furthermore, if ged(Q,T1,...,T,) = 1 and deg(ged(V,Q)) > 1, then wy ¢ K[z|wy + -+ +
K[z]w,,.

Theorem 3 ([Bronstein 98]) Suppose that the denominator F' of some w; is not squarefree,
and let F = F1F% --- F¥ be its squarefree factorization. Then,

wo = Fy -+ Frw; € Ogpp)\(K[z]wy + -+ + K[z]wy).

The lazy Hermite reduction proceeds by solving the system 2.8 in K (z). Either the reduction
will succeed, or one of the above theorems produces an element wy € O g\ (K [z]wy +- - - +
K[z]w,). Let then """ | Cyw; and F be the numerator and denominator of wy with respect
to w. Using Hermitian row reduction, we can zero out the last row of

F
F
F
c, Cy - C,
obtaining a matrix of the form
Cip Ciz - Cip
Co1 Coo - Cop
Cn 1 Cn,2 Cn,n
0 0 0

with Cij S K[m] Let w; = (Z?:l Cijwj)/F for 1 < i <n. Then, w = (@1,...,wn) is a
basis for E over K and

Kz]w; + - - + K[z]w,, = K[z]w, + - - + K[z]w, + K[z]w

is a submodule of O g}, which strictly contains K [z]w; + - - + K[x]w,, since it contains wy.
Any strictly increasing chain of submodules of Ok,) must stabilize after a finite number of
steps, which means that this process produces a basis for which either the Hermite reduction
can be carried out, or for which f has a squarefree denominator.
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Example 2 Continuing example 1 for which the Hermite reduction failed, Theorem 2 implies
that

1
wo = ;(—wag + (2 + Dwy) = (—2zy* + (2 + 1))z € Oka)
Performing a Hermitian row reduction on

xT

T
T
0 0 -2z x+1

yields

T
1
0 0 0 O

so the new basis is w = (1,y,%%,y3/x), and the denominator of f with respect to w is z,
which is squarefree.

Simple radical extensions

The integration algorithm becomes easier when F is a simple radical extension of K (z), i.e.
E = K(2)[y]/(y™ — a) for some a € K(x). Write a = A/D where A,D € K|z], and let
AD"! = A1 A%. .. A¥ be a squarefree factorization of AD"~1. Writing i = ng; + r;, for
1<i<k, where0<r; <n,let F=A{ .. -Al*, H=AT"---Aj* and z = yD/F. Then,

w_ (D n_y"D"_AD”_l_ " .
z —(yF> = = =A" - Af=H

Since 7; < n for each i, the squarefree factorization of H is of the form H = H{H3 --- H™
with m < n. An integral basis is then w = (wy, ..., w,) where

Zifl

m [(i=1)j/n]

w; = 1<i<n (2.11)

and the Hermite reduction with respect to the above basis is always guaranteed to succeed.
Furthermore, when using that basis, the system 2.8 becomes diagonal and its solution can
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be written explicitly: writing D; = H;nzl H J-W /") we have

i—1

/
m Wi /_ m z
S, = UV (mel) —Uv (Dq;_lvml)
—1H' Di_ll 1% Zi71
ov ( ' D MUy )\ v

i—1H D,_{ ,
= U(V( - H—Di_1>—(m—1)V>wl-

so the unique solution of 2.8 in K (z) is

A;
EF b))

and it can be shown that the denominator of each f; is coprime with V when m > 2.

fi= for1<i<n (2.12)

Example 3 Consider

dx

/ (228 +1)/(2® + 1)
o7+ 22% + o

The integrand is

(22° + 1)y

f:x17+2x9+x

€ E=Q(a)lyl/(y* —2° - 1)

so H = x® + 1 which is squarefree, implying that the integral basis 2.11 is (wy,ws) = (1
The squarefree factorization of x'7 +22° + z is 2(2® +1)2 so U =2, V=28 +1,m
and the solution 2.12 of 2.8 is

’

y).
2

)

F=0, fom 228 4+ 1 (228 4+1)/4
1=Y 2 = = -
(i)

We have Q = 2%, 50V —Q =1, A=1, R= —1 and RQf, = V/2 — 1/4, implying that

_ Y _ e (BY - _
b= 4 and h=f (V) Cox(a8 4+ 1)

solve 2.7, i.e.

/ (228 + 1)/ (2% + 1) _ \/338 Vad +

217 4209 + ¢ o x8+]_

and the remaining integrand has a squarefree denominator.
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Liouville’s Theorem

Up to this point, the algorithms we have presented never fail, yet it can happen that an
algebraic function does not have an elementary integral, for example

x dx
V1—23
which is not an elementary function of x. So we need a way to recognize such functions
before completing the integration algorithm. Liouville was the first to state and prove a
precise theorem from Laplace’s observation that we can restrict the elementary integration

problem by allowing only new logarithms to appear linearly in the integral, all the other
terms appearing in the integral being already in the integrand.

Theorem 4 (Liouville [Liouville 1833a, Liouville 1833b]) Let E be an algebraic ex-
tension of the rational function field K (x), and f € E. If f has an elementary integral, then

there exist v € E, constants c1,...,c¢, € K and uy,...,ux € E(cy,...,c,)* such that
u u)
f:U/+6171+"‘+Ck7k (213)
U7 Uk

The above is a restriction to algebraic functions of the strong Liouville Theorem, whose proof
can be found in [Bronstein 97, Risch 69b]. An elegant and elementary algebraic proof of a
slightly weaker version can be found in [Rosenlicht 72]. As a consequence, we can look for
an integral of the form 2.4, Liouville’s Theorem guaranteeing that there is no elementary
integral if we cannot find one in that form. Note that the above theorem does not say
that every integral must have the above form, and in fact that form is not always the most
convenient one, for example,

/ : fch — arctan(z) = \/2?1 log (\/@tz)

The integral part

Following the Hermite reduction, we can assume that we have a basis w = (wyq,...,w,) of E
over K (z) made of integral elements such that our integrand is of the form f = >""" | A;w;/D
where D € K|[x] is squarefree. Given Liouville’s Theorem, we now have to solve equation
2.13 for v, uy, ..., ur and the constants cy, ..., ck. Since D is squarefree, it can be shown that
v € Oy for any solution, and in fact v corresponds to the polynomial part of the integral of
rational functions. It is however more difficult to compute than the integral of polynomials,
so Trager [Trager 84] gave a change of variable that guarantees that either v’ = 0 or f has
no elementary integral. In order to describe it, we need to define the analogue for algebraic
functions of having a nontrivial polynomial part: we say that a € F is integral at infinity if
there is a polynomial p = Y"1, a;y* € K|[z][y] such that p(z,a) = 0 and deg(a,,) > deg(a;)
for each i. Note that a rational function A/D € K(x) is integral at infinity if and only if
deg(A) < deg(D) since it is a zero of Dy — A. When a — E is not integral at infinity, we say
that it has a pole at infinity. Let

O, = {a € E such that « is integral at infinity}
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A set (by,...,b,) € E™ is called normal at infinity if there are rq,...,r, € K(x) such
that every a € Oo can be written as a = Y. | B;r;b;/C where C, By,...,B, € K|x]
and deg(C) > deg(B;) for each i. We say that the differential adz is integral at infinity
if az't1/" € O, where r is the smallest ramification index at infinity. Trager [Trager 84]
described an algorithm that converts an arbitrary integral basis wy, ..., w, into one that is
also normal at infinity, so the first part of his integration algorithm is as follows:

1. Pick any basis b = (by,...,b,) of E over K(x) that is composed of integral elements.

2. Pick an integer N € Z that is not zero of the denominator of f with respect to b, nor
of the discriminant of F over K(z), and perform the change of variable x = N + 1/z,
dx = —dz/z? on the integrand.

3. Compute an integral basis w for E over K(z) and make it normal at infinity

4. Perform the Hermite reduction on f using w, this yields g,h € E such that [ f dz =
g+ f h dz and h has a squarefree denominator with respect to w.

5. If hz? has a pole at infinity, then | f dz and [ h dz are not elementary functions

6. Otherwise, [ h dz is elementary if and only if there are constants c1,...,c; € K and
Ui, ..., ux € E(cy, ..., cr)* such that
c1 duy ¢ dug,
h=——+- 4+ —— 2.14
uy dz uy dz ( )

The condition that N is not a zero of the denominator of f with respect to b implies that the
fdz is integral at infinity after the change of variable, and Trager proved that if hdz is not
integral at infinity after the Hermite reduction, then f h dz and f f dz are not elementary
functions. The condition that N is not a zero of the discriminant of E over K(z) implies
that the ramification indices at infinity are all equal to 1 after the change of variable, hence
that h dz is integral at infinity if and only if hz? € O4. That second condition on N can be
disregarded, in which case we must replace hz? in step 5 by hz'T1/" where r is the smallest
ramification index at infinity. Note that hz? € O, implies that hz't/" € O, but not
conversely. Finally, we remark that for simple radical extensions, the integral basis 2.11 is
already normal at infinity.

Alternatively, we can use lazy Hermite reduction in the above algorithm: in step 3, we pick
any basis made of integral elements, then perform the lazy Hermite reduction in step 4. If
h € K(z) after the Hermite reduction, then we can complete the integral without computing
an integral basis. Otherwise, we compute an integral basis and make it normal at infinity
between steps 4 and 5. This lazy variant can compute [ f dz whenever it is an element of
FE without computing an integral basis.

The logarithmic part

Following the previous sections, we are left with solving equation 2.14 for the constants
c1,...,c, and for uy,...,ur. We must make at this point the following additional assump-
tions:
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e we have an integral primitive element for E over K(z), ie. y € Ofy; such that
E=K(2)(y),

o [E: K(2)] = [E : K(2)], i.e. the minimal polynomial for y over K|[z] is absolutely
reducible, and

e we have an integral basis w = (wy, ..., w,) for E over K(z), and w is normal at infinity

A primitive element can be computed by considering linear combinations of the generators of
E over K(x) with random coefficients in K (z), and Trager [Trager 84] describes an absolute
factorization algorithm, so the above assumptions can be ensured, although those steps can
be computationally very expensive, except in the case of simple radical extensions. Before
describing the second part of Trager’s integration algorithm, we need to define some concepts
from the theory of algebraic curves. Given a finite algebraic extension E = K (z)(y) of K(z),
a place P of E is a proper local subring of F containing K, and a divisor is a formal sum
> npP with finite support, where the np’s are integers and the P’s are places. Let P be a
place, then its maximal ideal pp is principal, so let p € E be a generator of pp. The order at
P is the function vp : E* — Z which maps f € E* to the largest k € Z such that f € p*P.
Given f € E*, the divisor of f is (f) = > vp(f)P where the sum is taken over all the places.
It has finite support since vp(f) # 0 if and only if P is a pole or zero of f. Finally, we say
that a divisor § = > npP is principal if § = (f) for some f € E*. Note that if § is principal,
the >~ mp = 0, but the converse is not generally true, except if F = K(z). Trager’s algorithm
proceeds essentially by constructing candidate divisors for the u;’s of 2.14:

e Let > | A;w; be the numerator of h with respect to w, and D be its (squarefree)
denominator

o Write Y1 | A;w; = G/H, where G € K|[z,y] and H € K|z]

e Let f € K[z,y] be the (monic) minimum polynomial for y over K(z), ¢t be a new
indeterminante and compute

D
R(t) = resultant, ( PDt ( resultant,, (G - tHCsz’ F)) ,D) € K|t]

e Let a1,...,a, € K be the distinct nonzero roots of R, (qi1,...,q) be a basis for the
vector space that they generate over Q, write a;; = 1;1¢1 + - - - + 11 qi for each i, where
r;; € Q and let m > 0 be a common denominator for all the r;;’s

e For1<j<kletd, = Zle mrij », 1P, where 7 is the ramification index of P, and
P, runs over all the places at which h dz has residue r;¢;

o If there are nonzero integers ni, ..., n; such that n;J; is principal for each j, then let
k
w=h— i 95 %
m = nju; dz

where u; € E(ai,...,a)* is such that n;j6; = (uj). If w = 0, then [hdz =
Z?Zl g;log(u;)/(mn;), otherwise if either u # 0 or there is no such integer n; for
at least one j, then h dz has no elementary integral.
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Note that this algorithm expresses the integral, when it is elementary, with the smallest
possible number of logarithms. Steps 3 to 6 requires computing in the splitting field K
of R over K, but it can be proven that, as in the case of rational functions, Ky is the
minimal algebraic extension of K necessary to express the integral in the form 2.4. Trager
[Trager 84] describes a representation of divisors as fractional ideals and gives algorithms for
the arithmetic of divisors and for testing whether a given divisor is principal. In order to
determine whether there exists an integer N such that NJ is principal, we need to reduce
the algebraic extension to one over a finite field F,q« for some “good” prime p € Z. Over [Fpq,
it is known that for every divisor § = > npP such that > np =0, MJ is principal for some
integer 1 < M < (1 + /p7)?9, where g is the genus of the curve [Weil 71], so we compute
such an M by testing M = 1,2,3,... until we find it. It can then be shown that for almost
all primes p, if M§ is not principal in characteristic 0, the N§ is not principal for any integer
N # 0. Since we can test whether the prime p is “good” by testing whether the image in
Fpq of the discriminant of the discriminant of the minimal polynomial for y over K|[z] is 0,
this yields a complete algorithm. In the special case of hyperelliptic extensions, i.e. simple
radical extensions of degree 2, Bertrand [Bertrand 95] describes a simpler representation of
divisors for which the arithmetic and principality tests are more efficient than the general
methods.

Example 4 Continuing example 3, we were left with the integrand

8 w
(8 :11) = (8 i 1) € E=Qz)[yl/(y* -2 -1)

where (wy,w2) = (1,y) Is an integral basis normal at infinity, and the denominator D =
x(x® + 1) of the integrand is squarefree. Its numerator is wy = y, so the resultant of step 3
is

resultant, (pp;(resultant,(y — t(92® + 1),y* — 2° — 1)), 2(2% + 1)) = ct'%(#* - 1)

where c is a large nonzero integer. Its nonzero roots are +1, and the integrand has residue 1
at the place P corresponding to the point (z,y) = (0,1) and —1 at the place @) corresponding
to the point (z,y) = (0, —1), so the divisor 1 of step 5 is 6 = P — Q. It turns out that d;,
201, and 34, are not principal, but that

e wy  1(@/(1+y)
4‘51‘(1+y) wd D) 1 Ay

which implies that

/m 1 <1+;:TH>

— 21
xz(28 +1) de 1%

Example 5 Consider
x dz

Wi
The integrand is
Ty
1—a3

f= € E=Q()l/(y* +2° 1)
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where (w1, ws) = (1,y) is an integral basis normal at infinity, and the denominaotr D = 1—z3
of the integrand is squarefree. Its numerator is xws = xy, So the resultant of step 3 is

resultant, (pp;(resultant, (vy + 3tx?, y* + 2* — 1)),1 — 2°) = 729¢°

whose only root is 0. Since f # 0, we conclude from step 6 that [ f dx is not an elementary
function.

Example 6

/ dz
V1 — a3
The integrand is

Y

Y e E= Q@) + 5" - )

f=

where (w1, ws) = (1,y) is an integral basis normal at infinity, and the denominator D = x—x*

of the integrand is squarefree. Its numerator is wy = y, so the resultant of step 3 is
resultant, (ppi(resultant, (y + t(4z® — 1),y* + 2% — 1)), 2 — 2*) = 729¢5(¢* — 1)

Its nonzero roots are +1, and the integrand has residue 1 at the place P corrseponding to
the point (x,y) = (0,1) and —1 at the place @) corresponding to the point (z,y) = (0, —1)
so the divisor 61 of step 5 is 61 = P — Q. It turns out that 6; and 201 are not principal, but

that
(y—1 Yy Ly-1)/(y+1)"
3(51—(y+1> and B =0

z—azt 3 (y—1)/(y+1)
which implies that

/ dx _110 Vv1—23 -1
ov/1—x3 3 & VvV1i—z3+4+1

2.3 Elementary Functions

Let f be an arbitrary elementary function. In order to generalize the algorithms of the
previous sections, we need to build an algebraic model in which f behaves in some sense like
a rational or algebraic function. For that purpose, we need to formally define differential
fields and elementary functions.

Differential algebra

A differential field (K, ) is a field K with a given map a — a' from K into K, satisfying
(a+b) =d +V and (ab)’ = a’b+ ab'. Such a map is called a derivation on K. An
element a € K which satisfies ' = 0 is called a constant, and the set Const(K)={a €
K such that o’ = 0} of all the constants of K is called a subfield of K.

A differential field (E,') is a differential equation of (K, ) if K C E and the derivation
on F extends the one on K. In that case, an element ¢t € F is a monomial over K if t is
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transcendental over K and ¢ € K[t], which implies that both K[t] and K (¢) are closed under
. An element t € E is elementary over K if either

e ¢/ =10'/bfor some b € K*, in which case we say that ¢ is a logarithm over K, and write
t =log(b), or

e t/ = b/t for some b € K*, in which case we say that ¢ is an exponential over K, and

write t = e’ or

e t is algebraic over K

A differential extension (E,") of (K,) is elementary over K, if there exist t1,...,t, in F
such that F = K(t1,...,t,) and each ¢; is elementary over K(t1,...,t;—1). We say that
f € K has an elementary integral over K if there exists an elementary extension (F)') of
(K, ) and g € F such that ¢’ = f. An elementary function of the variable z is an element of
an elementary extension of the rational function field (C(x),d/dx), where C' = Const(C(x)).

Elementary extensions are useful for modeling any function as a rational or algebraic function
of one main variable over the other terms present in the function: given an elementary
integrand f(z) dz, the integration algorithm first constructs a field C' containing all the
constants appearing in f, then the rational function field (C(x),d/dx), then an elementary
tower E = C(z)(t1,...,tx) containing f. Note that such a tower is not unique, and in
addition, ajoining a logarithm could in fact adjoin a new constant, and an exponential
could in fact be algebraic, for example Q(z)(log(z),log(2x)) = Q(log(2))(x)(log(x)) and
Q(x)(e9(®)/2) = Q(z)(y/x). There are however algorithms that detect all such occurences
and modify the tower accordingly [Risch 79], so we can assume that all the logarithms and
exponentials appearing in E are monomials, and that Const(E) = C. Let now ko be the
largest index such that tg, is transcendental over K = C(z)(t1,...,tg—1) and t = tg,.
Then FE is a finitely generated algebraic extension of K (t), and in the special case kg = k,
E = K(t). Thus, f € E can be seen as a univariate rational or algebraic function over K, the
major difference with the pure rational or algebraic cases being that K is not constant with
respect to the derivation. It turns out that the algorithms of the previous section can be
generalized to such towers, new methods being required only for the polynomial (or integral)
part. We note that Liouville’s Theorem remains valid when E is an arbitrary differential
field, so the integration algorithms work by attempting to solve equation 2.13 as previously.

Example 7 The function (1) is the element f = (t —t 1)y/~1/2 of E = K(t) where
K =Q(/-1)(z)(t1,t2) with

ti=Vad—at 1, ty=e2V 1) and = ((17102)/Otta)—av=T

which is transcendental over K. Alternatively, it can also be written as the element f =
20/(1+ 02) of F = K(0) where K == Q(z)(6y,0>) with

. 0
0 =V —z+1, 02:tan(x‘3791), and 9tan<xz 2)

which is a transcendental monomial over K. It turns out that both towers can be used in
order to integrate f.
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The algorithms of the previous sections relied extensively on squarefree factorization and on
the concept of squarefree polynomials. The appropriate analogue in monomial extensions
is the notion of normal polynomials: let ¢ be a monomial over K, we say that p € K[t] is
normal (with respect to ’) if ged(p,p’) = 1, and that p is special if ged(p,p’) = p, i.e. p|p’
in K[t]. For p € K[t] squarefree, let ps = ged(p,p’) and p, = p/ps. Then p = psp,,, while
ps is special and p,, is normal. Therefore, squarefree factorization can be used to write any
q € K[t] as a product ¢ = ¢sqn, where ged(gs,¢n) = 1, gs is special and all the squarefree
factors of g, are normal. We call g5 the special part of ¢ and ¢, its normal part.

The Hermite reduction

The Hermite reductions we presented for rational and algebraic functions work in exactly the
same way algebraic extensions of monomial extensions of K, as long as we apply them only
to the normal part of the denominator of the integrand. Thus, if D is the denominator of
the integrand, we let S be the special part of D, D1 D3 ... D™ be a squarefree factorization
of the normal part of D, V = D,,, U = D/V™ and the rational and algebraic Hermite
reductions proceed normally, eventually yielding an integrand whose denominator has a
squarefree normal part.

Example 8 Consider
-t
/ x — tan(x) Iz
tan(x)?
The integrand is

-1
f= It2 € K(t) where K = Q(z) and t' = t* 4+ 1

Its denominator is D = t2, and ged(t,t') = 1 implying that t is normal, so m = 2, V = t,
U = D/t? = 1, and the extended Euclidean algorithm yields

A
—— =t—a=—2(t?+ 1)+ (st + )t = —2UV' + (2t + 1)V

1-m

and the remaining integrand has a squarefree denominator.

implying that

Example 9 Consider

dzx

/ log(z)? + 2z log(x) + 2% + (z + 1)/ + log(z)
xlog(x)? + 222 log(x) + 3

The integrand is

2wt a4 (24 1)

y
Fromaa SE=EOW/ W —e-1)

f
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where K = Q(z) and t = log(x). The denominator of f with respect to the basis w = (1,y)
is D = xt? + 222t + 23 whose squarefree factorization is x(t + z)?. Both x and t + x are
normal, som =2,V =t+xz, U = D/V? =z, and the solution 2.12 of 2.8 is

_t2+2mt—|—x2 t2 + 2zt + 2

h= (-t +1) z+1
f2= x,+1 = -2
o+ o) — @+ 1)
We have Q = 1, so 0OV +1Q =1, A =0, R = 1, RQf; = f1 = —V?/(x + 1) and

RQfo = f, =0V —2, so B= —2y and
B\ 1
h_f_<V> Tz

/ log(x)? + 2xlog(x) + 22 + (z + 1)/ + log(x) i 2 N / dx
r = —
zlog(x)? + 222 log(x) + a2 vV +log(z) T

and the remaining integrand has a squarefree denominator.

implying that

The polynomial reduction

In the transcendental case E = K (t) and when t is a monomial satisfying deg,(¢') > 2, then
it is possible to reduce the degree of the polynomial part of the integrand until it is smaller
than deg,(¢'). In the case when ¢ = tan(b) for some b € K, then it is possible either to prove
that the integral is not elementary, or to reduce the polynomial part of the integrand to be
in K. Let f € K(t) be our integrand and write f = P+ A/D, where P,A,D € K]Jt] and
deg(A) < deg(D). Write P = >"¢_ p;t" and ¢/ = Z?:o c;t" where po, ..., Pe,Coys- .. Ca € K,
d>2,p.#0and cqg # 0. It is easy to verify that if e > d, then

I
a _
= ———~——¢e7df! P 2.15

((6 —d+ 1)cq ) + (2.15)

where P € K]t] is such that P = 0 or deg,(P) < e. Repeating the above transformation
we obtain @, R € K]Jt] such that R = 0 or deg,(R) < d and P = Q' + R. Write then

R = Z?;Ol rit' where rg,...,rq_1 € K. Again, it is easy to verify that for any special
S € K[t] with deg,(S) > 0, we have

n— 1 rga g
 deg,(S) ca S
where R € K]Jt] is such that R = 0 or deg,(R) < e — 1. Furthermore, it can be proven

[Bronstein 97] that if R + A/D has an elementary integral over K (t), then ry4_1/cq is a
constant, which implies that

J =g | (R4 )

+R




26 CHAPTER 2. INTEGRATION [?]

so we are left with an integrand whose polynomial part has degree at most deg, (t'Y—2. In
this case t = tan(b) for b € K, then ¢/ = 0't> + V', so R € K.

Example 10 Consider
/(1 + ztan(z) + tan(z)?) dz

The integrand is
f=14at+t>c K(t) where K =Q(z) and ¢’ =#> +1

Using 2.15, we get P=f —t' = f — (t> + 1) = xt so0
/(1 + ztan(z) + tan(z)?) dz = tan(z) + /xtan(m) dz

and since x’ # 0, the above criterion imples that the remaining integral is not an elementary
function.

The residue criterion

Similarly to the Hermite reduction, the Rothstein-Trager and Lazard-Rioboo-Trager algo-
rithms are easy to generalize to the transcendental case E = K(t) for arbitrary monomials
t: let f € K(t) be our integrand and write f = P+ A/D + B/S where P, A, D, B, S € K]|t],
deg(A) < deg(D), S is special and, following the Hermite reduction, D is normal. Let then
z be a new indeterminate, s : K[z] = K|[z] be give by x(}_, a;2") = Y, a}z",

R = resultanty (D, A — zD’) € K|[z]

be the Rothstein-Trager resultant, R = Ry R3. ..R’,: be its squarefree factorization, @Q; =
ged, (R;, k(R;)) for each i, and

k
g:Z Z alog(ged (D, A —aD’))

i=1 a|Qi(a)=0

Note that the roots of each ; must all be constants, and that the arguments of the logarithms
can be obtained directly from the subresultant PRS of D and A — 2D’ as in the rational
function case. It can then be proven [Bronstein 97] that

e f— ¢ is always “simpler” than f

e the splitting field of Q1 - - - Qp over K is the minimal algebraic extension of K needed
in order to express [ f in the form 2.4

e if f has an elementary integral over K (¢), then R|x(R) in K[z] and the denominator
of f — ¢ is special
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Thus, while in the pure rational function case the remaining integrand is a polynomial, in this
case the remaining integrand has a special denominator. In that case we have additionally
that if its integral is elementary, then 2.13 has a solution such that v € K(t) has a special
denominator, and each u; € K(eq,...,cx)[t] is special.

Example 11 Consider

/ 2log(r)? — log(z) — 22 de
log(z)3 — 22 log(z)

The integrand is

202 —t — a?
f= e € K(t) where K = Q(z) and t = log(x)

Its denominator is D = t3 — 22t, which is normal, and the resultant is

2z -3
R = resultant; (t3 — 2t AT (2zz — 1)t +x(z — a:))
x

1 x
= 431 (B2t T
x°( :c)<z xz 4z+4

which is squarefree in K[z]. We have
k(R) = —x2(4(52” 4 3)2° + 8x(32? — 2)2* + (52 — 3)z — 2x(322 — 2))

50 )
Q1 =ged (R, kR) = 22 <22 — 4)
and

3a

200 —
ged ¢ <t3 + 2%t STy (2za — D)t + z(a — x)) =t+ 2ax

where a? — 1/4 = 0, whence

1 1
= alog(t + 2ax) = = log(t + x) — = log(t — =
g ala2213/4_0 g( ) = 5 log(t + ) — 5 log(t — 2)

Computing f — g’ we find

2log(x)* —log(z) —z* 1 o log(x) + dx
/ log(z)3 — 22 log(z) do = 2 log (log(x) - x) + / log(x)

and since deg,(Q1) < deg,(R), it follows that the remaining integral is not an elementary
function (it is in fact the logarithmic integral Li(x)).

In the most general case, when E = K (t)(y) is algebraic over K (t) and y is integral over K[t],
the criterion part of the above result remains valid: let w = (w1, ..., w,) be an integral basis
for E over K (t) and write the integrand f € E as f =Y ., Ayw;/D + >_" | Byw;/S where
S is special and, following the Hermite reduction, D is normal. Write > " ; A;w; = G/H,
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where G € K|t,y] and H € K[t], let F € K[t,y] be the (monic) minimum polynomial for y
over K(t), z be a new indeterminante and compute

R(z) = resultant, (pp,(resultant, (G — tHD', F)), D) € K|t] (2.16)

It can then be proven [Bronstein 90c] that if f has an elementary integral over E, then
R|x(R) in K[z].

Example 12 Consider

=) (1/3)
/M i (2.17)
1+ log(1+ e®)

The integrand is

f= g € E= K0/~ 1)

where K = Q(z)(t1), t1 = €* and t = log(l + t1). Its denominator with respect to the
integral basis w = (1,y,y?) is D =t + 1, which is normal, and the resultant is

t3
R = resultant, (pp, (resultanty (y — zt1 /(1 +t1),y> — 1)), t + 1) = ——2 2% —
(14+1t)3
We have 5
3ty
R)=—7-+—
K(R) 1+ t1)4z

which is coprime with R in K|z], implying that the integral 2.17 is not an elementary
function.

The transcendental logarithmic case

Suppose now that ¢ = log(b) for some b € K*, and that F = K(t). Then, every special
polynomial must be in K, so, following the residue criterion, we must look for a solution
v € K[t], uy,...,up € K(c1,...,¢,)* of 2.13. Furthermore, the integrand f is also in K[t],

so write f = Z?:o fit* where fo,..., fa € K and fq # 0. We must have deg;(v) < d + 1, so

- T
writing v = Zfio v;t", we get

k

/fdtd ot fit+ fo = vapat™T ot v + ZCiIOg(ui)
i—1

If d = 0, then the above is simply an integration problem for fy € K, which can be solved
recursively. Otherwise, differentiating both sides and equating the coefficients of t¢, we get

vgr1’ =0 and
/

b
fd = U:i + (d + 1)1)(1_;,_13 (218)

Since fy € K, we can recursively apply the integration algorithm to fg, either proving that
2.18 has no solution, in which case f has no elementary integral, or obtaining the constant
v4+1, and vg up to an additive constant (in fact, we apply recursively a specialized version of
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the integration algorithm to equations of the form 2.18, see [Bronstein 97] for details). Write
then vg = Tg + ¢4 where 77 € K is known and ¢g € Const(K) is undetermined. Equating
the coefficients of t4~! yields

/ /
fa—1— deE =wvg1' + dcdg
which is an equation of the form 2.18, so we again recursively compute ¢4 and vg_1 up to
an additive constant. We repeat this process until either one of the recursive integrations
fails, in which case f has no elementary integral, or we reduce our integrand to an element
of K, which is then integrated recursively. The algorithm of this section can also be applied
to real arc-tangent extensions, i.e. K (t) where ¢ is a monomial satisfying ¢’ = /(1 + b?) for
some b € K.

The transcendental exponential case

Suppose now that ¢ = e® for some b € K, and that £ = K(t). Then, every nonzero special
polynomial must be of the form at™ for a« € K* and m € N. Since

(atm)l a t! a ,
=—+m—=—+mb
at™ a - t a i
we must then look for a solution v € K[t,t71], ug,...,ur € K(c1,...,¢,)* of 2.13. Further-

more, the integrand f is also in K[t,t~!], so write f = Z‘j:e fitt where f.,..., fq € K and
e,d € Z. Since (at™)" = (a' + mb’)t"™ for any m € Z, we must have v = Mb + Z?:e v;t® for
some integer M, hence

d d k
/Z fitt = Mb+ Zviti + Z ci log(u;)
i—e i=e i=1

Differentiating both sides and equating the coefficients of each power to t¢, we get

k ’
fo = (vo + Mb)' + chﬁ

i=1 v
which is simply an integration problem for fy € K, and

fi=vi+ibv; fore<i<d,i#0

The above problem is called a Risch differential equation over K. Although solving it seems
more complicated than solving ¢’ = f, it is actually simpler than an integration problem
because we look for the solutions v; in K only rather than in an extension of K. Bronstein
[Bronstein 90c, Bronstein 91a, Bronstein 97] and Risch [Risch 68, Risch 69a, Risch 69b] de-
scribe algorithms for solving this type of equation when K is an elementary extension of the
rational function field.
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The transcendental tangent case

Suppose now that ¢t = tan(b) for some b € K, ie. t' = b/(1 +t?), that /=1 ¢ K and
that E = K(t). Then, every nonzero special polynomial must be of the form a(t? + 1)™ for
a € K* and m € N. Since

(@P+1)™) o (241

= — = — - 2mb't
a(t? +1)m a+m 241 a+m
we must look for v = V/(¢?4+1)™ where V € K|[t], m1,...,my € N, constants c1,...,cx € K
and uq,...,u; € K(c1,...,cg)* such that

k k ,
f — U/ —+ 2b’t20imi —+ Zci%
i=1 i=1 v

Furthermore, the integrand f € K(t) following the residue criterion must be of the form
f=A4/t>+1)M where A € K[t] and M > 0. If M > 0, it can be shown that m = M and

that , ,
DGl w)-()
(o) (

where at + b and ct +d are the remainders module t? 41 of A and V respectively. The above
is a coupled differential system, which can be solved by methods similar to the ones used
for Risch differential equations [Bronstein 97]. If it has no solution, then the integral is not
elementary, otherwise we reduce the integrand to h € K|[t], at which point the polynomial
reduction either proves that its integral is not elementary, or reduce the integrand to an
element of K, which is integrated recursively.

[ome)
2t/x

f= 211 € K(t) where K = Q(z) and t = tan (g)

Example 13 Consider

The integrand is

Its denominator is D = t? 4 1, which is special, and the system 2.19 becomes

(o) (3 0) (2) = (%)

which has no solution in Q(z), implying that the integral is not an elementary function.

The algebraic logarithmic case

The transcendental logarithmic case method also generalizes to the case when E = K(t)(y)
is algebraic over K (t), t = log(b) for b € K* and y is integral over K[t]: following the residue
criterion, we can assume that R|x(R) where R is given by 2.16, hence that all its roots in
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K are constants. The polynomial part of the integrand is replace by a family of at most
[E : K(t)] Puiseux expansions at infinity, each of the form

ST a0 Yl (2.20)
i>0

where 6" = t~! for some positive integer 7. Applying the integration algorithm recursively
to a, € K, we can test whether there exist p € Const(K) and v € K such that

/

= / —_—
ar =0 +pb

If there are no such v and c for at least one of the series, then the integral is not elementary,
otherwise p is uniquely determined by a,, solet p1, ..., p; where ¢ < [E : K (t)] be the distinct
constants we obtain, a1, ...,a, € K be the distinct nonzero roots of R, and (q1, ..., qx) be a
basis for the vector space generated by the p;’s and «;’s over Q. Write a; = 1191+ - -+ 75k qk
and p; = sipqq + -+ + Sikqr for each i, where 7;;,s;; € Q and let m > 0 be a common
denominator for all the r;;’s and s;;’s. For 1 < j <k, let

s q
6 = g mrj E rkP - E ms;j g s1Q1
i=1 1 =1 l

where 7; is the ramification index of P}, s; is the ramification index of @);, P, runs over all
the finite places at which h dz has residue r;a; and ); runs over all the infinite places at
which p = p;. As in the pure algebraic case, if there is a j for which Nd; is not principal
for any nonzero integer N, then the integral is not elementary, otherwise, let nq,...,n; be
nonzero integers such that n;d; is principal for each j, and

q; U
ZnJJuJ

where f is the integrand and u; € E(ay,...,as,p1,...,pq)" is such that n;d; = (u;). If the
integral of 1 is elementary, then 2.13 must have a solution with v € O/, and uy, ..., ux € K

so we must solve
n

h= Zl 1sz —Z’U wl—l—Zv,w —I—ch—_ (2.21)

for vy,...,v, € K[t], constants ci,...,¢, € K and uq, ..., uy € K" where w = (w1, ..., wy)
is an integral basis for E over K (t).

If E is a simple radical extension of K (t), and we use the basis 2.11 and the notation of that
section, then w; = 1 and

_1H/ D/
;_(zn i Dz 1>w for1<i<n (2.22)

This implies that 2.21 becomes

k
A V) + Zci“—; (2.23)
D = ui

(2
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which is simply an integration problem for A;/D € K(t), and

A; ,—1H' Dj_
5:1;; (zn H_Dz_1>vi forl<i<n (2.24)
which are Risch differential equations over K (t)

Example 14 Consider

/ (22 + 22 + 1)\/z + log(x) + (3z + 1) log(z) + 322 + = i

(xlog(z) + x2)\/x + log(z) + 22 log(x) + x3
The integrand is

(Bz+Dt—ad+a22)y— 222 -z —1)t—223 +2% +2
xt? — (2% — 222)t — x* + 23

=

€ E=K()yl/(F)

where F = y? —x—t, K = Q(z) and t = log(z). Its denominator with respect to the integral
basis w = (1,y) is D = xt? — (23 — 222)t — 2* + 2, which is normal, and the resultant is

R = resultant;(pp,(resultant, (((3z + 1)t — 2® 4+ 2?)y
— (222 —2x -1t - 22> + 22 + 2 — 2D', F)), D)

= 222z +1)*(z+1)%(z — 1)?23(2 - 2)

We have
362 + 1622 — 287 — 12
K(R) =
2z +1)(x+1)(z—1)
so R|k(R) in K|[z]. Its only nonzero root is 2, and the integrand has residue 2 at the place
P corresponding to the point (t,y) = (22 — x, —x). There is only one place Q at infinity of
ramification index 2, and the coefficient of t—! in the Puiseux expansion of f at Q is

1 /
a2:1—2x+52(sc—332)’+%

which implies that the corresponding p is 1. Therefore, the divisor for the logand is § =
2P — 2Q). It turns out that § = (u) where u = (x + y)? € E*, so the new integrand is

W (+y) @+ Dy
= _— = —2 =
h=1 U / T+y xt + 22

We have y? =t + x, which is squarefree, so 2.23 becomes

k
: u;
0=v; + ci—
: %
i=1 ¢

whose solution is v1 = k = 0 and 2.24 becomes

i VR ik S
ot o2 2 opt+2x2 2
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whose solution is vy = 2, implying that h = 2y’, hence that

der =

/ (2% + 22 + 1)y/z + log(x) + (3z + 1) log(z) + 322 + =
(xlog(x) + x2)\/x + log(z) + 22 log(x) + 3

2y/x +log(z) + 2log (m +VT+ log(x))

In the general case when E' is not a radical extension of K (t), 2.21 is solved by bounding
deg;(v;) and comparing the Puiseux expansions at infinity of >, v;w; with those of the
form 2.20 of h, see [Bronstein 90c, Risch 68] for details.

The algebraic exponential case

The transcendental exponential case method also generalizes to the case when E = K(t)(y)
is algebraic over K(t), t = e’ for b € K and y is integral over K[t]: following the residue
criterion, we can assume that R|x(R) where R is given by 2.16, hence that all its roots in
K are constants. The denominator of the integrand must be of the form D = t™U where
ged(U,t) = 1, U is squarefree and m > 0.

If m > 0, E is a simple radical extension of K (t), and we use the basis 2.11, then it is possible
to reduce the power of t appearing in D by a process similar to the Hermite reduction: writing
the integrand f = Y"1 | A;w;/(t™U), we ask whether we can compute by, ...,b, € K and
Cy,...,C, € KJt] such that

/Zz 1sz_2?1b Zz L Ciw;

tmyU tm -+ tm—1y

Differentiating both sides and multiplying through by t™ we get

i A 1sz —Zb’wl—i—wa —mb’wal N [}Cwl

Using 2.22 and equating the coefficients of w; on both sides, we get

Ai t 7

for1<i<n (2.25)

where
i—1H' D; 1

n H Dz 1
Since t'/t = V' € K, it follows that the denominator of w; is not divisible by ¢ in K[t], hence,
evaluating 2.25 at t = 0, we get
A;(0)
U(0)

e K(t)

W; =

= b + (wi(0) —mb')b; for 1 <i<mn (2.26)

which are Risch differential equations over K(t). If any of them has no solution in K (t),
then the integral is not elementary, otherwise we repeat this process until the denominator
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of the integrand is normal. We then perform the change of variable # = ¢~!, which is also
exponential over K since 7=V t, and repeat the above process in order to eliminate the
power of ¢ from the denominator of the integrand. It can be shown that after this process,
any solution of 2.13 must have v € K.

Example 15 Consider

/ 3(x + e*)/3) 4 (222 + 3z)e” + 5z da

x(x + e)1/3)
The integrand is

(222 + 3x)t + 522)y? + 3t + 3z c

ot + 22 E=K@®[/(’ —t—x)

f=

where K = Q(x) and t = e®. Its denominator with respect to the integral basis w = (1,y,y?)
is D = xt 4+ 22, which is normal, and the resultant is

R = resultant (pp, (resultanty (((222 4 3z)t + 52%)y? + 3t + 3z — 2D/,
Y —t— 1)), D) = a%(1 — )5

We have 1 8
T —
R)=———FR
~(R) z(x —1)
so R|k(R) in K[2], its only root being 0. Since D is not divisible by t, let t = t~! and » = ty.

We havef = —f and 23 — T — x> = 0, so the integral basis 2.11 is
22
w = (@1,@2,@3) = (13 Z, t)
Writing f in terms of that basis gives

 3al’ + 30 + (5227 + 22 + 3x)ws

f = -
228 +at

whose denominator D = t(x +22%) is divisible by f. We have H = (1 +t) so Dy = Dy = 1
and Dy = t, implying that

(1—32)f—2

— , and w3 =
3zt + 3

w1 = O, W2 =
Therefore the equations 2.26 become

L 2
Ozb/1+b1,0:b’2+§b2, and2m+3:bg+§b3

whose solutions are by = bs = 0 and bs = 3z, implying that the new integrand is

3zws\’ 3
hzf_( t3) Tz
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hence that

dx=3x(x+er)(2/3)+3/d§

/ 3(z + e*)1/3) 4 (222 + 3z)e” + 5a2
x(z + er)(1/3)

In the general case when E is not a radical extension of K (t), following the Hermite reduction,
any solution of 2.13 must have v = > | v;w; /t™ where v1,. .., v, € K[t]. We can compute
v by bounding deg,(v;) and comparing the Puiseux expansions at ¢ = 0 and at infinity of
S vw;/t™ with those of the form 2.20 of the integrand, see [Bronstein 90c, Risch 68] for
details.

Once we are reduced to solving 2.13 for v € K, constants cj,...,c; € K and uq,...,u, €
E(ci,...,cx)*, constants py,...,ps € K can be determined at all the places above t = 0 and
at infinity in a manner similar to the algebraic logarithmic case, at which point the algorithm
proceeds by constructing the divisors ¢; and the u;’s as in that case. Again, the details are
quite technical and can be found in [Bronstein 90c, Risch 68, Risch 69a].
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Chapter 3

Singular Value Decomposition
[Puffinware 09]

3.1 Singular Value Decomposition Tutorial

When you browse standard web sources like Wikipedia to learn about Singular Value De-
composition or SVD you find many equations, but not an intuitive explanation of what it is
or how it works. SVD is a way of factoring matrices into a series of linear approximations
that expose the underlying structure of the matrix. Two important properties are that the
linear factoring is exact and optimal. Exact means that the series of linear factors, added
together, exactly equal the original matrix. Optimal means that, for the standard means of
measuring matrix similarity (the Frobenius norm), these factors give the best possible linear
approximation at each step in the series.

SVD is extraordinarily useful and has many applications such as data analysis, signal pro-
cessing, pattern recognition, image compression, weather prediction, and Latent Sematic
Analysis or LSA (also referred to as Latent Semantic Indexing). Why is SVD so useful and
how does it work?

As a simple example, let’s look at golf scores. Suppose Phil, Tiger, and Vijay play together
for 9 holes and they each make par on every hole. Their scorecard, which can also be viewed
as a (hole x player) matrix might look like this.
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Hole | Par | Phil | Tiger | Vijay
4

—
o
S

QL o o e W Ot
QO o R W Ot

© 00~ Tk Wi
U W = b W Ut
T W = s W Ot

5 )

Let’s look at the problem of trying to predict what score each player will make on a given
hole. One idea is give each hole a HoleDifficulty factor, and each player a PlayerAbility
factor. The actual score is predicted by multiplying these two factors together.

PredictedScore = HoleDifficulty * PlayerAbility

For the first attempt, let’s make the HoleDifficulty be the par score for the hole, and let’s
make the player ability equal to 1. So on the first hole, which is par 4, we would expect a
player of ability 1 to get a score of 4.

PredictedScore = HoleDifficulty * PlayerAbility =4 * 1 = 4

For our entire scorecard or matrix, all we have to do is multiply the PlayerAbility (assumed
to be 1 for all players) by the HoleDifficulty (ranges from par 3 to par 5) and we can exactly
predict all the scores in our example.

In fact, this is the one dimensional (1-D) SVD factorization of the scorecard. We can
represent our scorecard or matrix as the product of two vectors, the HoleDifficulty vector and
the Player Ability vector. To predict any score, simply multiply the appropriate HoleDifficulty
factor by the appropriate PlayerAbility factor. Following normal vector multiplication rules,
we can

generate the matrix of scores by multiplying the HoleDifficulty vector by the PlayerAbility
vector, according to the following equation.

Phil | Tiger | Vijay
4 4 4

*

Phil | Tiger
1 1

Vijay
1

W oA A A A W
W oA A A AW
W oA A A A W
I
CULo R R R R W T

5 5 5
which is HoleDifficulty * PlayerAbility

Mathematicians like to keep everything orderly, so the convention is that all vectors should
be scaled so they have length 1. For example, the PlayerAbility vector is modified so that
the sum of the squares of its elements add to 1, instead of the current 12 4+ 12 + 12 = 3. To
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do this, we have to divide each element by the square root of 3, so that when we square it,
it becomes and the three elements add to 1. Similarly, we have to divide each HoleDifficulty
element by the square root of 148. The square root of 3 times the square root of 148 is our
scaling factor 21.07. The complete 1-D SVD factorization (to 2 decimal places) is:

Phil | Tiger | Vija
S 1 0.33
4 4 4
0.41
5 5 5
0.25
3 3 3 0.33
4 4 4 |_1 o3 £| 2107 ‘*\ Phil | Tiger | Vijay |
4 4 4 ' ' | 0.58 | 0.58 | 0.58 |
0.33
4 4 4
0.33
4 4 4
0.25
5 0 J 0.41
5 5 5

which is HoleDifficulty * ScaleFactor * PlayerAbility

Our HoleDifficulty vector, that starts with 0.33, is called the Left Singular Vector. The
ScaleFactor is the Singular Value, and our PlayerAbility vector, that starts with 0.58 is the
Right Singular Vector. If we represent these 3 parts exactly, and multiply them together,
we get the exact original scores. This means our matrix is a rank 1 matrix, another way of
saying it has a simple and predictable pattern.

More complicated matrices cannot be completely predicted just by using one set of factors
as we have done. In that case, we have to introduce a second set of factors to refine our
predictions. To do that, we subtract our predicted scores from the actual scores, getting the
residual scores. Then we find a second set of HoleDifficulty2 and PlayerAbility2 numbers
that best predict the residual scores.

Rather than guessing HoleDifficulty and PlayerAbility factors and subtracting predicted
scores, there exist powerful algorithms than can calculate SVD factorizations for you. Let’s
look at the actual scores from the first 9 holes of the 2007 Players Championship as played
by Phil, Tiger, and Vijay.

Hole | Par | Phil | Tiger | Vijay
1 4 4 4 5
2 ) 4 ) )
3 3 3 3 2
4 4 4 5 4
5 4 4 4 4
6 4 3 5 4
7 4 4 4 3
8 3 2 4 4
9 5 5 5 5

The 1-D SVD factorization of the scores is shown below. To make this example easier to
understand, I have incorporated the ScaleFactor into the PlayerAbility and HoleDifficulty
vectors so we can ignore the ScaleFactor for this example.
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Phil | Tiger | Vijay 434

395 | 464 | 4.34 4.69

4.27 | 5.02 | 4.69 2.66

242 | 2.85 | 2.66 4.36

3.97 | 4.67 | 436 | _ 4'00 « | Phil | Tiger | Vijay
3.64 | 4.28 | 4.00 4'05 091 | 1.07 | 1.00
3.69 | 433 | 4.05 3.66

333 | 392 | 3.66 3:39

3.08 | 3.63 | 3.39 5.00

4.55 | 5.35 | 5.00 ’

which is HoleDifficulty * PlayerAbility

Notice that the HoleDifficulty factor is almost the average of that hole for the 3 players. For
example hole 5, where everyone scored 4, does have a factor of 4.00. However hole 6, where
the average score is also 4, has a factor of 4.05 instead of 4.00. Similarly, the PlayerAbility
is almost the percentage of par that the player achieved, For example Tiger shot 39 with
par being 36, and 39/36 = 1.08 which is almost his PlayerAbility factor (for these 9 holes)
of 1.07.

Why don’t the hole averages and par percentages exactly match the 1-D SVD factors? The
answer is that SVD further refines those numbers in a cycle. For example, we can start by
assuming HoleDifficulty is the hole average and then ask what PlayerAbility best matches
the scores, given those HoleDifficulty numbers? Once we have that answer we can go back
and ask what HoleDifficulty best matches the scores given those PlayerAbility numbers? We
keep iterating this way until we converge to a set of factors that best predict the score. SVD
shortcuts this process and immediately give us the factors that we would have converged to
if we carried out the process.

One very useful property of SVD is that it always finds the optimal set of factors that
best predict the scores, according to the standard matrix similarity measure (the Frobenius
norm). That is, if we use SVD to find the factors of a matrix, those are the best factors that
can be found. This optimality property means that we don’t have to wonder if a different
set of numbers might predict scores better.

Now let’s look at the difference between the actual scores and our 1-D approximation. A plus
difference means that the actual score is higher than the predicted score, a minus difference
means the actual score is lower than the prediction. For example, on the first hole Tiger got
a 4 and the predicted score was 4.64 so we get 4 — 4.64 = —0.64. In other words, we must
add -0.64 to our prediction to get the actual score.

Once these differences have been found, we can do the same thing again and predict these
differences using the formula HoleDifficulty2 * PlayerAbility2. Since these factors are trying
to predict the differences, they are the 2-D factors and we have put a 2 after their names
(ex. HoleDifficulty2) to show they are the second set of factors.
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Phil | Tiger | Vijay 018

0.05 | -0.64 | 0.66 -0‘38

-0.28 | -0.02 | 0.31 O.éO

0.58 | 0.15 | -0.66 0.15

0.03 | 0.33 | -0.36 0'35 « | Phil | Tiger | Vijay
0.36 | -0.28 | 0.00 _0' 67 0.82 | -0.20 | -0.53
-0.69 | 0.67 | -0.05 0 '89

0.67 | 0.08 | -0.66 _1' 29

-1.08 | 0.37 | 0.61 0'44

0.45 | -0.35 | 0.00 ’

which is HoleDifficulty(2) * PlayerAbility(2)

There are some interesting observations we can make about these factors. Notice that hole
8 has the most significant HoleDifficulty2 factor (1.29). That means that it is the hard-
est hole to predict. Indeed, it was the only hole on which none of the 3 players made
par. It was especially hard to predict because it was the most difficult hole relative to par
(HoleDif ficulty — par) = (3.39 — 3) = 0.39, and yet Phil birdied it making his score more
than a stroke below his predicted score (he scored 2 versus his predicted score of 3.08). Other
holes that were hard to predict were holes 3 (0.80) and 7 (0.89) because Vijay beat Phil on
those holes even though, in general, Phil was playing better.

The full SVD for this example matrix (9 holes by 3 players) has 3 sets of factors. In general,
a m x n matrix where m ;= n can have at most n factors, so our 923 matrix cannot have
more than 3 sets of factors. Here is the full SVD factorization (to two decimal places).

Pzﬂ Tlfer Vlg)ay 4.34 | -0.18 | -0.90

h - . 4.69 | -0.38 | -0.15

3 3 9 2.06-1 0.80 1040 | 1 ppy | Tiger | Vijay |
4.36 | 0.15 | 0.47

4 5 4 .| 091 [ 1.07 | 1.00
4.00 | 0.35 | -0.29

4 4 4 0.82 | -0.20 | -0.53

3 5 4 4.051-0.67 1 0.68 0.21 | 0.76 | -0.62

| i 5 3.66 | 0.89 | 0.33 - : -

) i i 339 | -1.29 | 0.14

- - : 500 | 0.44 | -0.36

which is HoleDifficulty(1-3) * PlayerAbility(1-3)

By SVD convention, the HoleDifficulty and PlayerAbility vectors should all have length 1,
so the conventional SVD factorization is:
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Phil | Tiger | Vijay
4 4 5
4 5 5
3 3 2
4 5 4
4 4 4
3 5 4
4 4 3
2 4 4
5 5 5
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0.35
0.38
0.22
0.36
0.33
0.33
0.30
0.28
0.41

0.09
0.19
-0.40
-0.08
-0.18
0.33
-0.44
0.64
-0.22

-0.64
-0.10
0.28
0.33
-0.20
0.48
0.23
0.10
-0.25

| Phil | Tiger | Vijay |

0.53 | 0.62 | 0.58

*
8 2'81 1 (312 -0.82 | 0.20 | 0.53
' -0.21 | 0.76 | -0.62

which is HoleDifficulty(1-3)* ScaleFactor(1-3) * PlayerAbility(1-3)

We hope that you have some idea of what SVD is and how it can be used. The next
section covers applying SVD to Latent Sematic Analysis or LSA. Although the domain is
different, the concepts are the same. We are trying to predict patterns of how words occur
in documents instead of trying to predict patterns of how players score on holes.
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Quaternions

from [Altmann 05]:

Quaternions are inextricably linked to rotations. Rotations, however, are
an accident of three-dimensional space. In spaces of any other dimensions, the
fundamental operations are reflections (mirrors). The quaternion algebra is, in
fact, merely a sub-algebra of the Clifford algebra of order three. If the quaternion
algebra might be labelled the algebra of rotations, then the Clifford algebra is
the algebra of mirrors and it is thus vastly more general than quaternion algebra.

Peter Guthrie Tait, Robert S. Sutor, Timothy Daly

Preface

The Theory of Quaternions is due to Sir William Rowan Hamilton, Royal Astronomer of
Ireland, who presented his first paper on the subject to the Royal Irish Academy in 1843.
His Lectures on Quaternions were published in 1853, and his Elements, in 1866, shortly after
his death. The Elements of Quaternions by Tait [Tait 1890] is the accepted text-book for
advanced students.

Large portions of this file are derived from a public domain version of Tait’s book combined
with the algebra available in Axiom. The purpose is to develop a tutorial introduction to
the Axiom domain and its uses.
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4.1 Quaternions

4.2 Vectors, and their Composition

1. For at least two centuries the geometrical representation of the negative and imaginary
algebraic quantities, —1 and /—1 has been a favourite subject of speculation with mathe-
maticians. The essence of almost all of the proposed processes consists in employing such
expressions to indicate the DIRECTION, not the length, of lines.

2. Thus it was long ago seen that if positive quantities were measured off in one direction
along a fixed line, a useful and lawful convention enabled us to express negative quantities
of the same kind by simply laying them off on the same line in the opposite direction.
This convention is an essential part of the Cartesian method, and is constantly employed in
Analytical Geometry and Applied Mathematics.

3. Wallis, towards the end of the seventeenth century, proposed to represent the impossible
roots of a quadratic equation by going out of the line on which, if real, they would have been
laid off. This construction is equivalent to the consideration of v/—1 as a directed unit-line
perpendicular to that on which real quantities are measured.

4. In the usual notation of Analytical Geometry of two dimensions, when rectangular axes
are employed, this amounts to reckoning each unit of length along Oy as ++/—1, and on Oy’
as —/—1 ; while on Oz each unit is 41, and on Oz it is —1.

If we look at these four lines in circular order, i.e. in the order of positive rotation (that of
the northern hemisphere of the earth about its axis, or opposite to that of the hands of a

watch), they give
1,V=T, -1, —v=1

In Axiom the same elements would be written as complex numbers which are
constructed using the function complex:
complex(1,0)
1

Type: Complex Integer

complex(0,1)
Yot
Type: Complex Integer
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complex(-1,0)

Type: Complex Integer

complex(0,-1)

Type: Complex Integer

Note that %i is of type Complex(Integer), that is, the imaginary part of a
complex number. The apparently equivalent expression

sqrt (-1)
V-1
Type: AlgebraicNumber

has the type AlgebraicNumber which means that it is the root of a polyno-
mial with rational coefficients.

In this series each expression is derived from that which precedes it by multiplication by the
factor v/—1. Hence we may consider /—1 as an operator, analogous to a handle perpendicu-
lar to the plane of xy, whose effect on any line in that plane is to make it rotate (positively)
about the origin through an angle of 90°.

In Axiom

%ix%i

Type: Complex Integer

5. In such a system, (which seems to have been first developed, in 1805, by Buée) a point in
the plane of reference is defined by a single imaginary expression. Thus a + by/—1 may be
considered as a single quantity, denoting the point, P, whose coordinates are a and b. Or,
it may be used as an expression for the line OP joining that point with the origin. In the
latter sense, the expression a + bv/—1 implicitly contains the direction, as well as the length,
of this line ; since, as we see at once, the direction is inclined at an angle tan=!(b/a) to the
axis of x, and the length is v/a? + b2. Thus, say we have

OP =a+bv-1
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the line OP considered as that by which we pass from one extremity, O, to the other, P. In
this sense it is called a VECTOR. Considering, in the plane, any other vector,

0Q =d +bv-1

In order to created superscripted variables we use the superscript function
from the SYMBOL domain. So we can create a’ as “ap” (that is, “a-prime”)
and b’ as “bp” (“b-prime”) thus (also note that the underscore character
is Axiom’s escape character which removes any special meaning of the next
character, in this case, the quote character):

ap:=superscript(a, [_’])

a

Type: Symbol
bp:=superscript (b, [-’])

b/

Type: Symbol
at this point we can type
ap+bp*%i

a +b %i

Type: Complex Polynomial Integer

the addition of these two lines obviously gives

OR=a+d + (b+¥)V-1

In Axiom the computation looks like:

op:=complex(a,b)

a+b %i

Type: Complex Polynomial Integer
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oq:=complex(ap,bp)
a +b" %i

Type: Complex Polynomial Integer

op + oq

a+a + (b+b)%i

Type: Complex Polynomial Integer

and we see that the sum is the diagonal of the parallelogram on OP, OQ. This is the law of
the composition of simultaneous velocities; and it contains, of course, the law of subtraction
of one directed line from another.

6. Operating on the first of these symbols by the factor /—1, it becomes —b + ay/—1; and
now, of course, denotes the point whose x and y coordinates are —b and a; or the line joining
this point with the origin. The length is still v/a2 + b2, but the angle the line makes with
the axis of x is tan=!(—a/b); which is evidently greater by m/2 than before the operation.

op*complex(0,1)

—b+a1

Type: Complex Polynomial Integer

7. De Moivre’s Theorem tends to lead us still further in the same direction. In fact, it is
easy to see that if we use, instead of v/—1, the more general factor cosa + v/—1sina, its
effect on any line is to turn it through the (positive) angle «. in the plane of z, y. [Of course

the former factor, v/—1, is merely the particular case of this, when a = 7].

Thus
(cosa + v/—1sina)(a + bv/—1)

= acosa —bsina+ v —1(asina+ bcosa)

by direct multiplication. The reader will at once see that the new form indicates that a
rotation through an angle a has taken place, if he compares it with the common formulae
for turning the coordinate axes through a given angle. Or, in a less simple manner, thus

Length = +/(acosa —bsina)? + (asina + beosa)?

as before.
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Inclination to axis of x

—1 asina+bcosa
acosa—bsina

—_1 tana+ %

= tan

= tan 1-ttana
1b
a

o+ tan™

8. We see now, as it were, why it happens that

(cosa+ v —1sina)™ = cosma + v —1sinma

In fact, the first operator produces m successive rotations in the same direction, each through
the angle « ; the second, a single rotation through the angle ma.

9. It may be interesting, at this stage, to anticipate so far as to remark that in the theory
of Quaternions the analogue of

cos ++/—1sin6
is cosf +wsinf
where w?=-1

Here, however, w is not the algebraic /—1, but is any directed unit-line whatever in space.

10. In the present century Argand, Warren, Mourey, and others, extended the results
of Wallis and Buée. They attempted to express as a line the product of two lines each
represented by a symbol such a 4+ by/—1. To a certain extent they succeeded, but all their
results remained confined to two dimensions.

The product, [], of two such lines was defined as the fourth proportional to unity and the
two lines, thus

lia4+by/—1:mad +0vV-1:]]
or I1=(aa’ = bb') + (a'b+Va)v/—1

The length of ] is obviously the product of the lengths of the factor lines; and its direction
makes an angle with the axis of # which is the sum of those made by the factor lines. From
this result the quotient of two such lines follows immediately.

11. A very curious speculation, due to Servois and published in 1813 in Gergonne’s Annales,
is one of the very few, so far as has been discovered, in which a well-founded guess at a
possible mode of extension to three dimensions is contained. Endeavouring to extend to
space the form a + bv/—1 for the plane, he is guided by analogy to write for a directed
unit-line in space the form

pcosa + gcos B + 7 cosy

where «, 3, v are its inclinations to the three axes. He perceives easily that p, ¢, » must
be non-reals: but, he asks, “seraient-elles imaginaires réductibles & la forme générale A +
B+/—17" The i,j, k of the Quaternion Calculus furnish an answer to this question. (See
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Chap. II.) But it may be remarked that, in applying the idea to lines in a plane, a vector
OP will no longer be represented (as in §5) by

OP = a+by-1
but by OP = pa + qb
And if, similarly, OQ = pa’ + gV’

the addition of these two lines gives for OR (which retains its previous signification)

OR=pla+d +qb+?)

12. Beyond this, few attempts were made, or at least recorded, in earlier times, to extend the
principle to space of three dimensions; and, though many such had been made before 1843,
none, with the single exception of Hamilton’s, have resulted in simple, practical methods;
all, however ingenious, seeming to lead almost at once to processes and results of fearful
complexity.

For a lucid, complete, and most impartial statement of the claims of his predecessors in this
field we refer to the Preface to Hamilton’s Lectures on Quaternions. He there shows how his
long protracted investigations of Sets culminated in this unique system of tridimensional-
space geometry.

13. It was reserved for Hamilton to discover the use and properties of a class of symbols
which, though all in a certain sense square roots of -1, may be considered as real unit lines,
tied down to no particular direction in space ; the expression for a vector is, or may be taken
to be,

p=1ix+ jy+kz

but such vector is considered in connection with an extraspatial magnitude w, and we have
thus the notion of a QUATERNION

w+p

This is the fundamental notion in the singularly elegant, and enormously powerful, Calculus
of Quaternions.

While the schemes for using the algebraic v/—1 to indicate direction make one direction in
space expressible by real numbers, the remainder being imaginaries of some kind, and thus
lead to expressions which are heterogeneous ; Hamilton s system makes all directions in
space equally imaginary, or rather equally real, thereby ensuring to his Calculus the power
of dealing with space indifferently in all directions.

In fact, as we shall see, the Quaternion method is independent of axes or any supposed
directions in space, and takes its reference lines solely from the problem it is applied to.

14. But, for the purpose of elementary exposition, it is best to begin by assimilating it as
closely as we can to the ordinary Cartesian methods of Geometry of Three Dimensions, with
which the student is supposed to be, to some extent at least, acquainted. Such assistance, it
will be found, can (as a rule) soon be dispensed with; and Hamilton regarded any apparent
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necessity for an oc casional recurrence to it, in higher applications, as an indication of
imperfect development in the proper methods of the new Calculus.

We commence, therefore, with some very elementary geometrical ideas, relating to the theory
of vectors in space. It will subsequently appear how we are thus led to the notion of a
Quaternion.

15. Suppose we have two points A and B in space, and suppose A given, on how many
numbers does B’s relative position depend ?

If we refer to Cartesian coordinates (rectangular or not) we find that the data required are
the excesses of B’s three coordinates over those of A. Hence three numbers are required.

Or we may take polar coordinates. To define the moon’s position with respect to the earth
we must have its Geocentric Latitude and Longitude, or its Right Ascension and Declination,
and, in addition, its distance or radius-vector. Three again.

16. Here it is to be carefully noticed that nothing has been said of the actual coordinates
of either A or B, or of the earth and moon, in space; it is only the relative coordinates that
are contemplated.

Hence any expression, as AB, denoting a line considered with reference to direction and
currency as well as length, (whatever may be its actual position in space) contains implicitly
three numbers, and all lines parallel and equal to AB, and concurrent with it, depend in the
same way upon the same three. Hence, all lines which are equal, parallel, and concurrent,
may be represented by a common symbol, and that symbol contains three distinct numbers.
In this sense a line is called a VECTOR, since by it we pass from the one extremity, A, to
the other, B, and it may thus be considered as an instrument which carries A to B: so that
a vector may be employed to indicate a definite translation in space.

[The term ” currency ” has been suggested by Cayley for use instead of the somewhat vague
suggestion sometimes taken to be involved in the word ”direction.” Thus parallel lines have
the same direction, though they may have similar or opposite currencies. The definition of
a vector essentially includes its currency.]

17. We may here remark, once for all, that in establishing a new Calculus, we are at liberty
to give any definitions whatever of our symbols, provided that no two of these interfere with,
or contradict, each other, and in doing so in Quaternions sl simplicity and (so to speak)
naturalness were the inventor’s aim.

18. Let AB be represented by a, we know that « involves three separate numbers, and that
these depend solely upon the position of B relatively to A. Now if C'D be equal in length to
AB and if these lines be parallel, and have the same currency, we may evidently write

CD=AB=q«

where it will be seen that the sign of equality between vectors contains implicitly equality
in length, parallelism in direction, and concurrency. So far we have extended the meaning
of an algebraical symbol. And it is to be noticed that an equation between vectors, as

a=p

contains three distinct equations between mere numbers.
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19. We must now define + (and the meaning of — will follow) in the new Calculus. Let A,
B, C be any three points, and (with the above meaning of =) let

AB = o, BC = B, 4C = ~

If we define + (in accordance with the idea (§16) that a vector represents a translation) by
the equation
atf=ry

or ﬁJrBiC:E

we contradict nothing that precedes, but we at once introduce the idea that vectors are to
be compounded, in direction and magnitude, like simultaneous velocities. A reason for this
may be seen in another way if we remember that by adding the (algebraic) differences of the
Cartesian coordinates of B and A, to those of the coordinates of C and B, we get those of
the coordinates of C' and A. Hence these coordinates enter linearly into the expression for a
vector. (See, again, §5.)

20. But we also see that if C and A coincide (and C may be any point)
AC =0

for no vector is then required to carry A to C. Hence the above relation may be written, in
this case, -
AB+ BA=0

or, introducing, and by the same act defining, the symbol —,

=—-BA

S
Sy

Hence, the symbol —, applied to a vector, simply shows that its currency is to be reversed.
And this is consistent with all that precedes; for instance,

AB+ BC = AC
and AB=AC - BC
or =AC + CB

are evidently but different expressions of the same truth.

21. In any triangle, ABC, we have, of course,
AB+BC+CA=0
and, in any closed polygon, whether plane or gauche,

AB+BC+...+YZ+ZA=0

In the case of the polygon we have also

AB+BC+...+YZ=AZ
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These are the well-known propositions regarding composition of velocities, which, by New-
ton’s second law of motion, give us the geometrical laws of composition of forces acting at
one point.

22. If we compound any number of parallel vectors, the result is obviously a numerical
multiple of any one of them. Thus, if A, B, C are in one straight line,

BC =zAB

where z is a number, positive when B lies between A and C, otherwise negative; but such
that its numerical value, independent of sign, is the ratio of the length of BC to that of
AB. This is at once evident if AB and BC be commensurable; and is easily extended to
incommensurables by the usual reductio ad absurdum.

23. An important, but almost obvious, proposition is that any vector may be resolved, and

in one way only, into three components parallel respectively to any three given vectors, no
two of which are parallel, and which are not parallel to one plane.

g
P

¢
A

Let OA, OB, OC be the three fixed vectors, OP any other vector. From P draw PQ
parallel to CO, meeting the plane BOA in Q. [There must be a definite point Q, else PQ,
and therefore CO, would be parallel to BOA, a case specially excepted.] From @Q draw QR
parallel to BO, meeting OA in R.

Then we have OP = OR + RQ + QP (§21), and these components are respectively parallel
to the three given vectors. By §22 we may express OR as a numerical multiple of OA, RQ
of OB, and QP of OC. Hence we have, generally, for any vector in terms of three fixed
non-coplanar vectors, a, 3, 7y

R

OP =p=xa+yB+ 2y

which exhibits, in one form, the three numbers on which a vector depends (§16). Here x, y,
z are perfectly definite, and can have but single values.
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24. Similarly any vector, as OQ, in the same plane with OA and@, can be resolved (in
one way only) into components OR, R(), parallel respectively to OA and OB; so long, at
least, as these two vectors are not parallel to each other.

25. There is particular advantage, in certain cases, in employing a series of three mutually
perpendicular unit-vectors as lines of reference. This system Hamilton denotes by 4,5, k.

Any other vector is then expressible as
p=ai+yj+zk

Since i, j, k are unit-vectors, x, y, z are here the lengths of conterminous edges of a rect-
angular parallelepiped of which p is the vector-diagonal; so that the length of p is, in this

case,
/.’L‘Q _|_y2 +Z2
Let w=~¢& +nj+Ck
be any other vector, then (by the proposition of §23) the vector
equation p=w

obviously involves the following three equations among numbers,

r=8y=n2=(

Suppose ¢ to be drawn eastwards, j northwards, and k upwards, this is equivalent merely to
saying that if two points coincide, they are equally to the east (or west) of any third point,
equally to the north (or south) of it, and equally elevated above (or depressed below) its
level.

26. It is to be carefully noticed that it is only when «, 3, v are not coplanar that a vector
equation such as
p=w

or ra+yf+zy=8a+nB+(y
necessitates the three numerical equations

r=8y=n2=(

For, if a, B, v be coplanar (§24), a condition of the following form must hold

v =aa+ bp
Hence, p=(z+za)a+ (y+ 2b)3
w=(§+Ca)a+ (n+¢b)B

and the equation p=w

now requires only the two numerical conditions

r+za=&+ Ca y+zb=n+¢b

27. The Commutative and Associative Laws hold in the combination of vectors by the signs
+ and —. It is obvious that, if we prove this for the sign +, it will be equally proved for
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—, because — before a vector (§20) merely indicates that it is to be reversed before being
considered positive.

Let A, B, C, D be, in order, the corners of a parallelogram ; we have, obviously,
AB =DC AD = BC

And AB+ BC = AC = AD+ DC = BC + AB

Hence the commutative law is true for the addition of any two vectors, and is therefore
generally true.

Again, whatever four points are represented by A, B, C, D, we
AD =AB+ BD = AC+CD
or substituting their values for AD, BD, AC respectively, in these three expressions,
AB+BC+CD=AB+ (BC+CD)=(AB+BC)+CD

And thus the truth of the associative law is evident.
28. The equation
p=uap
where p is the vector connecting a variable point with the origin, 8 a definite vector, and x
an indefinite number, represents the straight line drawn from the origin parallel to S (§22).

The straight line drawn from A, where OA = «, and parallel to 3, has the equation
p=o+zp (4.1)
In words, we may pass directly from O to P by the vector OP or p; or we may pass first to

A, by means of OA or a, and then to P along a vector parallel to 3 (§16).

Equation 4.1 is one of the many useful forms into which Quaternions enable us to throw
the general equation of a straight line in space. As we have seen (§25) it is equivalent to
three numerical equations; but, as these involve the indefinite quantity x, they are virtually
equivalent to but two, as in ordinary Geometry of Three Dimensions.

29. A good illustration of this remark is furnished by the fact that the equation

p=ya+h

which contains two indefinite quantities, is virtually equivalent to only one numerical equa-
tion. And it is easy to see that it represents the plane in which the lines o and § lie; or the
surface which is formed by drawing, through every point of OA, a line parallel to OB. In
fact, the equation, as written, is simply §24 in symbols.

And it is evident that the equation

p=7+ya+azs

is the equation of the plane passing through the extremity of «, and parallel to a and .
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It will now be obvious to the reader that the equation

p=piog +p2a2+...22pa

where oy, as , &c. are given vectors, and py, ps, &c. numerical quantities, represents a
straight line if p1, p2, &c. be linear functions of one indeterminate number; and a plane,
if they be linear expressions containing two indeterminate numbers. Later (§31 (1)), this
theorem will be much extended.

Again, the equation
p=za+yB+zy

refers to any point whatever in space, provided «, 8, v are not coplanar. (Ante, §23)

30. The equation of the line joining any two points A and B, where OA = a and OB = 3,
is obviously
p=a+z(f-a)

or p=PB+yla—p)
These equations are of course identical, as may be seen by putting 1 — y for z.
The first may be written

p+(x—1a—z8=0
or pp+qga+rB=0
subject to the condition p + ¢ + r = 0 identically. That is — A homogeneous linear function

of three vectors, equated to zero, expresses that the extremities of these vectors are in one
straight line, if the sum of the coefficients be identically zero.

Similarly, the equation of the plane containing the extremities A, B, C' of the three non-
coplanar vectors «, 3, v is
p=a+z(B—a)+yly-p)
where x and y are each indeterminate.
This may be written
pp+ga+rf+sy=0
with the identical relation
p+qg+r+az=0
which is one form of the condition that four points may lie in one plane.
31. We have already the means of proving, in a very simple manner, numerous classes of
propositions in plane and solid geometry. A very few examples, however, must suffice at this
stage; since we have hardly, as yet, crossed the threshold of the subject, and are dealing with
mere linear equations connecting two or more vectors, and even with them we are restricted

as yet to operations of mere addition. We will give these examples with a painful minuteness
of detail, which the reader will soon find to be necessary only for a short time, if at all.

(a) The diagonals of a parallelogram bisect each other.

Let ABCD be the parallelogram, O the point of intersection of its diagonals. Then
AO+OB=AB=DC =DO+0OC
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which gives AO —OC = DO - OB
The two vectors here equated are parallel to the diagonals respectively. Such an equation is,
of course, absurd unless

1. The diagonals are parallel, in which case the figure is not a parallelogram;
2. AO = OC, and DO = OB, the proposition.

(b) To shew that a triangle can be constructed, whose sides are parallel, and equal, to the
bisectors of the sides of any triangle.

Let ABC' be any triangle, Aa, Bb, Cc the bisectors of the sides.

Then o . o -
Aa =AB+Ba =AB+iBC
Bb . =BC+3CA
Ce =CA+ ;AB
Hence Aa+Bb+Cc=2(AB+BC+CA)=0
which (§21) proves the proposition.
Also L L L
Aa = AB+ iBC
= AB- 1(CA+ AB)
~ L@B-CA)
= 3(AB+AC)

results which are sometimes useful. They may be easily verified by producing Aa to twice
its length and joining the extremity with B.

(b') The bisectors of the sides of a triangle meet in a point, which trisects each of them.

Taking A as origin, and putting «, 3, v for vectors parallel, and equal, to the sides taken in
order BC, C'A, AB; the equation of Bb is (§28 (1))

p:7+x(v+§):(1+x)v+gﬁ

That of Cc is, in the same way,
p=-1+y)p- %v
At the point O, where Bb and Cc intersect,
p= (1+w)v+gﬂz —(1+y)B - %’7
Since v and f are not parallel, this equation gives
14z = —% and gz—(l—l-y)

From these T=Yy=—

(VI
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Hence AO = L(y— B) = 2Aa (See Ex. (b))

This equation shows, being a vector one, that Aa passes through O, and that AO : Oa ::
2:1.

(c) If
OA=qa
OB =
OC = la+mp

be three given co-planar vectors, ¢ the intersection of AB, OC, and if the lines indicated in the

figure be drawn, the points a,b1,c1 lie in a straight lin.

We see at once, by the process indicated in §30, that

oo latmb Gy le o mb
l+m 1—m 1-1
Hence we easily find
—_— mp —_— la —  —la+mp
Oar = 1—1—-2m’ Oby = 1-20—m’ R

These give L L L
—(1 -1 - 2m)0a1 + (1 — 2] — m)0b1 — (m — l)OCl =0

But —(1—=1—-2m)+ (1 -2l —m) — (m — 1) = 0 identically.

This, by §30, proves the proposition.

(d) Let OA = a, OB = B, be any two vectors. If MP be a given line parallel to OB; and
0Q, BQ, be drawn parallel to AP, OP respectively ; the locus of @ is a straight line parallel
to OA.
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.-'f.
U B :'-i\lr
Let o OM = ea
Then AP =e—la+zp

Hence the equation of OQ is
p=yle—la+zpf)

and that of BQ is p=p+z(ea+ xp)

At Q we have, therefore,
zy=1+4zzx
yle—1) = ze }

These give zy = e, and the equation of the locus of @ is
p=eB+ya
i.e. a straight line parallel to OA, drawn through N in OB produced, so that
ON : 0B :: OM : OA

COR. If BQ meet MP in ¢, Pq = $; and if AP meet NQ in p, Qp = .

Also, for the point R we have pR = AP, QR = Bq.

Further, the locus of R is a hyperbola, of which M P and N(@Q are the asymptotes. See, in
this connection, §31 (k) below.

Hence, if from any two points, A and B, lines be drawn intercepting a given length Pq on a
given line Mq ; and if, from R their point of intersection, Rp be laid off = PA, and RQ) = ¢B
; Q and p lie on a fixed straight line, and the length of Qp is constant.

(e) To find the centre of inertia of any system of masses.

If OA = a, OB = a1, be the vector sides of any triangle, the vector from the vertex dividing
the base AB in C so that
BC:CA:m:my

mao—+miag

1S mtmy
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For AB is a; — a, and therefore AC is

mi

(1 — )

m —+ mq

Hence OC =0A+ AC

mi
_a+m+m1(a1 @)

mao + miag

m 4+ mq

This expression shows how to find the centre of inertia of two masses ; m at the extremity
of a, my at that of a;. Introduce ms at the extremity of as, then the vector of the centre of
inertia of the three is, by a second application of the formula,

(m+ m1)(%ﬁfl) + moa _ma+miag + maaa

(m+my) + mo o m -+ mq + ma

From this it is clear that, for any number of masses, expressed generally by m at the extremity
of the vector «, the vector of the centre of inertia is

2. (ma)

7= 5 m)

This may be written > m(a—p)=0

Now a a1 — (8 is the vector of m, with respect to the centre of inertia. Hence the theorem,
If the vector of each element of a mass, drawn from the centre of inertia, be increased in
length in proportion to the mass of the element, the sum of all these vectors is zero.

(f) We see at once that the equation
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32
j— t [
p=at+ 5

where ¢ is an indeterminate number, and «, [ given vectors, represents a parabola. The
origin, O, is a point on the curve, 8 is parallel to the axis, i.e. is the diameter OB drawn
from the origin, and « is OA the tangent at the origin. In the figure

qP=a.  0g=

The secant joining the points where t has the values ¢ and t’ is represented by the equation

p = at+%t2+x(at’+%zfatf’62£> (830)
= at+%t2+x(t'—t){a+ﬁt/7_t}

Write « for (¢’ — ¢) [which may have any value|, then put ¢’ = ¢, and the equation of the

tangent at the point (¢) is
2

pzat—k%—kx(a—kﬁt)

In this put © = —¢, and we have
pt?
2
or the intercept of the tangent on the diameter is equal in length to the abscissa of the point
of contact, but has the opposite currency.

Otherwise: the tangent is parallel to the vector o + 5t or at + St or %ﬁ + at + %ﬂ or
OQ + OP. But TP =TO + OP, hence TO = OQ.

(g) Since the equation of any tangent to the parabola is

2

p:at—i—%-l-x(a—i-ﬁt)

let us find the tangents which can be drawn from a given point. Let the vector of the point
be

p=pa+qB (§24)

Since the tangent is to pass through this point, we have, as con ditions to determine ¢ and
x?

t+x=0p

2

. t =
2+x q

by equating respectively the coefficients of o and .
Hence t=px\p?—2¢q
Thus, in general, two tangents can be drawn from a given point. These coincide if

P’ =2q
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that is, if the vector of the point from which they are to be drawn is

p2
p=pa+qﬁ=pa+§ﬁ

i.e. if the point lies on the parabola. They are imaginary if 2¢ > p?, that is, if the point be

2
ppa+<2+r>5

. o, . . . . . . aval 2
Qemg positive. Such a point is evidently within the curve, as at R, where OQ = &3,
QP =pa, PR =r0.

(h) Calling the values of ¢ for the two tangents found in (g) ¢; and ¢y respectively, it is
obvious that the vector joining the points of contact is

pti B3
t+ T gty — 22
aty + B ato B
which is parallel to o+ BB or, by the values of t; and ¢, in (g),
a+pp

Its direction, therefore, does not depend on ¢. In words, If pairs of tangents be drawn to
a parabola from points of a diameter produced, the chords of contact are parallel to the
tangent at the vertex of the diameter. This is also proved by a former result, for we must
have OT for each tangent equal to QO.

(i) The equation of the chord of contact, for the point whose vector is
p=pa+qp

2
is thus p=at; + B—;l +yla+pp)

Suppose this to pass always through the point whose vector is

p=ac+bp

th+y = a
2 - b
5 Ty =

or t1 =pE/p?—2pa+ 23

Comparing this with the expression in (g), we have

Then we must have

g=pa—"b
that is, the point from which the tangents are drawn has the vector a straight line (§28 (1)).

The mere form of this expression contains the proof of the usual properties of the pole and
polar in the parabola ; but, for the sake of the beginner, we adopt a simpler, though equally
general, process.
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Suppose a = 0. This merely restricts the pole to the particular diameter to which we have
referred the parabola. Then the pole is @), where

p="0b3
and the polar is the line TU, for which

p=—bB+pa

Hence the polar of any point is parallel to the tangent at the extremity of the diameter on
which the point lies, and its intersection with that diameter is as far beyond the vertex as
the pole is within, and vice versa.

(j) As another example let us prove the following theorem. If a triangle be inscribed in
a parabola, the three points in which the sides are met by tangents at the angles lie in a
straight line.

Since O is any point of the curve, we may take it as one corner of the triangle. Let ¢ and ¢;
determine the others. Then, if w1,ws,ws represent the vectors of the points of intersection of
the tangents with the sides, we easily find

t2 t
wi= g (o +38)
_ t? t
W2 = gy (a+58)
Wy = tf’ita
These values give
2 —t 2t —t; 2 — 2 0
wy — wy — w3 =
t ! T Ty 8
Also
20—t 22—t ti‘f*ﬂfo
t t tty
identically.

Hence, by §30, the proposition is proved.
(k) Other interesting examples of this method of treating curves will, of course, suggest
themselves to the student. Thus

p=acost+ fBsint

or
p=oazr+ V11— 22

represents an ellipse, of which the given vectors o and ( are semiconjugate diameters. If ¢
represent time, the radius-vector of this ellipse traces out equal areas in equal times. [We
may anticipate so far as to write the following :

2Area = T/Vpdp = TVozB./dt
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which will be easily understood later.]
Again,
p:at—&—? or p=atanx + fcotx

evidently represents a hyperbola referred to its asymptotes. [If ¢ represent time, the sectorial
area traced out is proportional to log ¢, taken between proper limits.] Thus, also, the equation

p=a(t+sint) + Bcost

in which « and g are of equal lengths, and at right angles to one another, represents a
cycloid. The origin is at the middle point of the axis (23) of the curve. [It may be added
that, if t represent time, this equation shows the motion of the tracing point, provided the
generating circle rolls uniformly, revolving at the rate of a radian per second.]

When the lengths of «, 5 are not equal, this equation gives the cycloid distorted by elongation
of its ordinates or abscissae : not a trochoid. The equation of a trochoid may be written

p = afet +sint) + Scost
e being greater or less than 1 as the curve is prolate or curtate. The lengths of o and 3 are
still taken as equal.

But, so far as we have yet gone with the explanation of the calculus, as we are not prepared
to determine the lengths or inclinations of vectors, we can investigate only a very limited
class of the properties of curves, represented by such equations as those above written.

(1) We may now, in extension of the statement in §29, make the obvious remark that

p=> pa

(where, as in §23, the number of vectors, «, can always be reduced to three, at most) is the
equation of a curve in space, if the numbers py, ps, &c. are functions of one indeterminate.
In such a case the equation is sometimes written

p=9(t)

But, if p1, p2, &c. be functions of two indeterminates, the locus of the extremity of p is a
surface; whose equation is sometimes written

p= ¢(t7 u)

[It may not be superfluous to call the reader’s attention to the fact that, in these equations,
@(t) or ¢(t,u) is necessarily a vector expression, since it is equated to a vector, p.]

(m) Thus the equation
p=oacost+ Bsint + 7t (4.2)

belongs to a helix,
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In Axiom we can draw this with the commands:

draw(a*cos(t)+b*sin(t)+c*u, [t=0..1,u=0..1]

tpdhere

while
p=acost+ Bsint + yu (4.3)

represents a cylinder whose generating lines are parallel to ~,

draw(a*cos (t)+b*sin(t)+c*u, [t=0..1,u=0..1]

tpdhere

and whose base is the ellipse
p = acost+ Bsint

The helix above lies wholly on this cylinder.

draw(a*cos(t)+b*sin(t)+c*u, [t=0..1,u=0..1]

tpdhere

Contrast with (2) the equation
p = u(acost + fsint + ) (3)

which represents a cone of the second degree

draw(a*cos(t)+b*sin(t)+c*u, [t=0..1,u=0..1]

tpdhere

made up, in fact, of all lines drawn from the origin to the ellipse

p=acost+ Bsint+~

draw(a*cos(t)+b*sin(t)+c*u, [t=0..1,u=0..1]

tpdhere

If, however, we write
p =ulacost + Bsint + ~t)

we form the equation of the transcendental cone whose vertex is at the origin, and on which
lies the helix (1).
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draw(a*cos (t)+b*sin(t)+c*u, [t=0..1,u=0..1]

tpdhere
In general
p=ud(t)
is the cone whose vertex is the origin, and on which lies the curve
p=o(t)
while p=o(t) +ua

is a cylinder, with generating lines parallel to «, standing on the same curve as base.

Again, p=pa+qB+ry
with a condition of the form
ap® +bg* +er? =1

belongs to a central surface of the second order, of which «, 3, 7 are the directions of
conjugate diameters. If a, b, ¢ be all positive, the surface is an ellipsoid.

32. In Example (f) above we performed an operation equivalent to the differentiation of a
vector with reference to a single numerical variable of which it was given as an explicit func-
tion. As this process is of very great use, especially in quaternion investigations connected
with the motion of a particle or point; and as it will afford us an opportunity of making a
preliminary step towards overcoming the novel difficulties which arise in quaternion differen-
tiation; we will devote a few sections to a more careful, though very elementary, exposition
of it.

33. It is a striking circumstance, when we consider the way in which Newton’s original
methods in the Differential Calculus have been decried, to find that Hamilton was obliged
to employ them, and not the more modern forms, in order to overcome the characteristic
difficulties of quaternion differentiation. Such a thing as a differential coefficient has ab-
solutely no meaning in quaternions, except in those special cases in which we are dealing
with degraded quaternions, such as numbers, Cartesian coordinates, &c. But a quaternion
expression has always a differential, which is, simply, what Newton called a fluxion.

As with the Laws of Motion, the basis of Dynamics, so with the foundations of the Differential
Calculus ; we are gradually coming to the conclusion that Newton s system is the best after
all.

34. Suppose p to be the vector of a curve in space. Then, generally, p may be expressed as
the sum of a number of terms, each of which is a multiple of a constant vector by a function
of some one indeterminate; or, as in §31 (1), if P be a point on the curve,

OP = p = ¢(t)

And, similarly, if @ be any other point on the curve,

0Q =p1=p+dp=o(t1) = ¢(t + ét)

where dt is any number whatever.
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The vector-chord PQ is therefore, rigorously,
op=p1—p=o(t+dt) — ¢t

35. It is obvious that, in the present case, because the vectors involved in ¢ are constant,
and their numerical multipliers alone vary, the expression ¢(t + 0t) is, by Taylor’s Theorem,
equivalent to

do(t) d>¢(t) (6t)°
T A
Hence, , ,
_do(t) ., d®o(t) (6t)
op = p ot + I 1'2+&c.

And we are thus entitled to write, when ¢ has been made indefinitely small,

P op _dp_d¢(t)_ ’
Limit ( st )&_O “w - a P (1)

In such a case as this, then, we are permitted to differentiate, or to form the differential
coefficient of, a vector, according to the ordinary rules of the Differential Calculus. But
great additional insight into the process is gained by applying Newton’s method.

36. Let OP be
and overlineOQ),

where dt is any number whatever.

The number ¢t may here be taken as representing time, i.e. we may suppose a point to move
along the curve in such a way that the value of ¢ for the vector of the point P of the curve
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denotes the interval which has elapsed (since a fixed epoch) when the moving point has
reached the extremity of that vector. If, then, dt represent any interval, finite or not, we see
that

@1 = ¢(t +dt)

will be the vector of the point after the additional interval dt.

But this, in general, gives us little or no information as to the velocity of the point at
P. We shall get a better approximation by halving the interval dt, and finding @5 , where
OQ, = ¢(t+3dt), as the position of the moving point at that time. Here the vector virtually
described in %dt is PQ, . To find, on this supposition, the vector described in dt, we must
double PQ, , and we find, as a second approximation to the vector which the moving point
would have described in time dt, if it had moved for that period in the direction and with
the velocity it had at P,

Pqy =2PQ, = 2(0Q,—OP)
= 2ot + zdt) — 6(1)}

The next approximation gives

Pq; =3PQ; = 3(0Q;— OP)
3{o(t + 3dt) — o(t)}
And so on, each step evidently leading us nearer the sought truth. Hence, to find the vector

which would have been described in time dt had the circumstances of the motion at P
remained undisturbed, we must find the value of

dp = Pq = Ly—sot {¢ (t + idt) - ¢(t>}

We have seen that in this particular case we may use Taylor’s Theorem. We have, therefore,

dp = Lomoor {#/(0) 20+ 0(1) 5 225 + e}

= ¢'(t)dt
And, if we choose, we may now write

dp /

= ()

37. But it is to be most particularly remarked that in the whole of this investigation no
regard whatever has been paid to the magnitude of dt. The question which we have now
answered may be put in the form — A point describes a given curve in a given manner. At any
point of its path its motion suddenly ceases to be accelerated. What space will it describe
in a definite interval? As Hamilton well observes, this is, for a planet or comet, the case of
a ‘celestial Atwood’s machine’.
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38. If we suppose the variable, in terms of which p is expressed, to be the arc, s, of the curve
measured from some fixed point, we find as before

dp = ¢'(v)ds

From the very nature of the question it is obvious that the length of dp must in this case be
ds, so that ¢’(s) is necessarily a unit-vector. This remark is of importance, as we shall see
later; and it may therefore be useful to obtain afresh the above result without any reference
to time or velocity.

39. Following strictly the process of Newton s VIIth Lemma, let us describe on Pgo an arc
similar to PQs, and so on. Then obviously, as the subdivision of ds is carried farther, the
new arc (whose length is always ds) more and more nearly (and without limit) coincides
with the line which expresses the corresponding approximation to dp.

40. As additional examples let us take some well-known plane curves; and first the hyperbola
(831 (k)
p=oat+ g

dp = (a—g)dt

This shows that the tangent is parallel to the vector
B

at — —
t

Here

In words, if the vector (from the centre) of a point in a hyperbola be one diagonal of
a parallelogram, two of whose sides coincide with the asymptotes, the other diagonal is
parallel to the tangent at the point, and cuts off a constant area from the space between the
asymptotes. (For the sides of this triangular area are ¢ times the length of «, and 1/¢ times
the length of 3, respectively; the angle between them being constant.)

Next, take the cycloid, as in §31 (k),
p=«a(t+sint) + fcost
We have
dp = {a(1 + cost) — Bsint}dt

At the vertex
t=0, cost =1, sint = 0, and dp = 2adt

At a cusp
t=m, cost = —1, sint = 0, and dp =0

This indicates that, at the cusp, the tracing point is ( instantaneously) at rest. To find the
direction of the tangent, and the form of the curve in the vicinity of the cusp, put t = 7+,
where powers of 7 above the second are omitted. We have

2
dp = Brdt + %dt
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so that, at the cusp, the tangent is parallel to 5. By making the same substitution in the

expression for p, we find that the part of the curve near the cusp is a semicubical parabola,
p=a(r+1°/6) - B(1—1%/2)

or, if the origin be shifted to the cusp (p = 7o — ),

p=ar’/6+ Br?)/2

41. Let us reverse the first of these questions, and seek the envelope of a line which cuts off
from two fixed axes a triangle of constant area.

If the axes be in the directions of a and (3, the intercepts may evidently be written at and
% Hence the equation of the line is (§30)

pzat—l—x(f—at)

The condition of envelopment is, obviously, (see Chap. IX.)
dp=20

This gives 0 = {afx<t%+a>}dt+ (gfat) dz 2
Hence (1—-2z)dt —tde =0

and —Zdt+9 =0

From these, at once, x = %, since dx and dt are indeterminate. Thus the equation of the
envelope is

at—l—%(g—at)
= %(at—!—%)

the hyperbola as before; o, 8 being portions of its asymptotes.

©
I

42. It may assist the student to a thorough comprehension of the above process, if we put
it in a slightly different form. Thus the equation of the enveloping line may be written

p:at(l—m)—i—ﬂ%

which gives
dp=0=ad{t(l —z)} + fd (%)

2 Here we have opportunity for a remark (very simple indeed, but) of the utmost importance. We are not
to equate separately to zero the coefficients of dt and dx; for we must remember that this equation is of the
form

0=pa+qB
where p and ¢ are numbers; and that, so long as a and 8 are actual and non-parallel vectors, the existence
of such an equation requires (§24)
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Hence, as « is not parallel to 5, we must have
x
d{t(1 —z)} =0, d(;) ~0
and these are, when expanded, the equations we obtained in the preceding section.

43. For farther illustration we give a solution not directly employing the differential calculus.
The equations of any two of the enveloping lines are

p:at—kz(f—at)

p=oat; +x1 <tﬂ atl)
1

t and t; being given, while x and z; are indeterminate.

At the point of intersection of these lines we have (§26),

t(l—z) = t1(1—$1)}

8

These give, by eliminating x{

t
t1+t

or T =
Hence the vector of the point of intersection is

oty +
Tttt

and thus, for the ultimate intersections, where L% =1,

1

P=3 (at + f) as before

COR. If. instead of the ultimate intersections, we consider the intersections of pairs of these
lines related by some law, we obtain useful results. Thus let

ttp =1

a+p
t+ ¢

or the intersection lies in the diagonal of the parallelogram on «, 5.

p

If t1 = mt, where m is constant,
mia + g

p= m—+1
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But we have also © = —1—
m-+1

Hence the locus of a point which divides in a given ratio a line cutting off a given area from
two fixed axes, is a hyperbola of which these axes are the asymptotes.

If we take either
27
= constant

tt1(t + t1) = constant, or
1(t+t1) s

the locus is a parabola; and so on.

It will be excellent practice for the student, at this stage, to work out in detail a number
of similar questions relating to the envelope of, or the locus of the intersection of selected
pairs from, a series of lines drawn according to a given law. And the process may easily be
extended to planes. Thus, for instance, we may form the general equation of planes which
cut off constant tetrahedra from the axes of coordinates. Their envelope is a surface of the
third degree whose equation may be written

p=za+yb+zy

where ryz = a®

Again, find the locus of the point of intersection of three of this group of planes, such that
the first intercepts on S and -y, the second on v and «, the third on a and g, lengths all
equal to one another, &c. But we must not loiter with such simple matters as these.

44. The reader who is fond of Anharmonic Ratios and Trans versals will find in the early
chapters of Hamilton’s Elements of Quaternions an admirable application of the composition
of vectors to these subjects. The Theory of Geometrical Nets, in a plane, and in space,
is there very fully developed; and the method is shown to include, as particular cases,
the corresponding processes of Grassmann’s Ausdehnungslehre and Mébius’ Barycentrische
Calcul. Some very curious investigations connected with curves and surfaces of the second
and third degrees are also there founded upon the composition of vectors.

4.3 Examples To Chapter 1.

1. The lines which join, towards the same parts, the extremities of two equal and parallel
lines are themselves equal and parallel. (Euclid, I. xxxiii.)

2. Find the vector of the middle point of the line which joins the middle points of the
diagonals of any quadrilateral, plane or gauche, the vectors of the corners being given; and
so prove that this point is the mean point of the quadrilateral.

If two opposite sides be divided proportionally, and two new quadrilaterals be formed by
joining the points of division, the mean points of the three quadrilaterals lie in a straight
line.

Show that the mean point may also be found by bisecting the line joining the middle points
of a pair of opposite sides.
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3. Verify that the property of the coefficients of three vectors whose extremities are in a line
(§30) is not interfered with by altering the origin.

4. If two triangles ABC, abe, be so situated in space that Aa, Bb, Cc meet in a point, the
intersections of AB, ab, of BC', be, and of C'A, ca, lie in a straight line.

5. Prove the converse of 4, i.e. if lines be drawn, one in each of two planes, from any three
points in the straight line in which these planes meet, the two triangles thus formed are
sections of a common pyramid.

6. If five quadrilaterals be formed by omitting in succession each of the sides of any pentagon,
the lines bisecting the diagonals of these quadrilaterals meet in a point. (H. Fox Talbot.)

7. Assuming, as in §7, that the operator
cosf + v/ —1sin6

turns any radius of a given circle through an angle 6 in the positive direction of rotation,
without altering its length, deduce the ordinary formulae for cos(A+ B), cos(A— B), sin(A+
B), and sin(A — B), in terms of sines and cosines of A and B.

8. If two tangents be drawn to a hyperbola, the line joining the centre with their point of
intersection bisects the lines join ing the points where the tangents meet the asymptotes :
and the secant through the points of contact bisects the intercepts on the asymptotes.

9. Any two tangents, limited by the asymptotes, divide each other proportionally.

10. If a chord of a hyperbola be one diagonal of a parallelogram whose sides are parallel to
the asymptotes, the other diagonal passes through the centre.

11. Given two points A and B, and a plane, C. Find the locus of P, such that if AP cut C
in @, and BP cut C' in R, QR may be a given vector.

12. Show that p=2*a+y?B+ (v +y)*y
is the equation of a cone of the second degree, and that its section by the plane
_pa+qB+ry
pt+qg+r
is an ellipse which touches, at their middle points, the sides of the triangle of whose corners
a, 3, v are the vectors. (Hamilton, Elements, p. 96.)

13. The lines which divide, proportionally, the pairs of opposite sides of a gauche quadrilat-
eral, are the generating lines of a hyperbolic paraboloid. (Ibid. p. 97.)

14. Show that p=x3a+y3B+ 23y
where z+y+2=0
represents a cone of the third order, and that its section by the plane

_patgbtry
pt+qg+r

is a cubic curve, of which the lines

_patdf .
Pty
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are the asymptotes and the three (real) tangents of inflection. Also that the mean point of
the triangle formed by these lines is a conjugate point of the curve. Hence that the vector
a+ 8+ is a conjugate ray of the cone. (Ibid. p. 96.)

4.4 Products And Quotients of Vectors

45. We now come to the consideration of questions in which the Calculus of Quaternions
differs entirely from any previous mathematical method; and here we shall get an idea of
what a Quaternion is, and whence it derives its name. These questions are fundamentally
involved in the novel use of the symbols of multiplication and division. And the simplest
introduction to the subject seems to be the consideration of the quotient, or ratio, of two
vectors.

46. If the given vectors be parallel to each other, we have already seen (§22) that either may
be expressed as a numerical multiple of the other; the multiplier being simply the ratio of
their lengths, taken positively if they have similar currency, negatively if they run opposite
ways.

47. If they be not parallel, let OA and OB be drawn parallel and equal to them from any
point O; and the question is reduced to finding the value of the ratio of two vectors drawn
from the same point. Let us first find upon how many distinct numbers this ratio depends.

We may suppose OA to be changed into OB by the following successive processes.

1st. Increase or diminish the length of OA till it becomes equal to that of OB. For this
only one number is required, viz. the ratio of the lengths of the two vectors. As Hamilton
remarks, this is a positive, or rather a signless, number.

2nd. Turn OA about O, in the common plane of the two vectors, until its direction coincides
with that of OB, and (remembering the effect of the first operation) we see that the two
vectors now coincide or become identical. To specify this operation three numbers are
required, viz. two angles (such as node and inclination in the case of a planet’s orbit) to fix
the plane in which the rotation takes place, and one angle for the amount of this rotation.

Thus it appears that the ratio of two vectors, or the multiplier required to change one vector
into another, in general depends upon four distinct numbers, whence the name QUATER-
NION.

A quaternion q is thus defined as expressing a relation
f = qo

between two vectors «, 5. By what precedes, the vectors «, 8, which serve for the definition
of a given quaternion, must be in a given plane, at a given inclination to each other, and
with their lengths in a given ratio ; but it is to be noticed that they may be any two such
vectors. [Inclination is understood to include sense, or currency, of rotation from a to 3.]

The particular case of perpendicularity of the two vectors, where their quotient is a vector
perpendicular to their plane, is fully considered below; §§64, 65, 72, &c.

48. Tt is obvious that the operations just described may be performed, with the same result,
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in the opposite order, being perfectly independent of each other. Thus it appears that a
quaternion, considered as the factor or agent which changes one definite vector into another,
may itself be decomposed into two factors of which the order is immaterial.

The stretching factor, or that which performs the first operation in §47, is called the TEN-
SOR, and is denoted by prefixing T to the quaternion considered.

The turning factor, or that corresponding to the second operation in §47, is called the
VERSOR, and is denoted by the letter U prefixed to the quaternion.

49. Thus, if OA = a, OB = 3, and if ¢ be the quaternion which changes a to 3, we have
f=qa

which we may write in the form

B gorBat=g
«

if we agree to define that

B

Ca=pata=4

@

Here it is to be particularly noticed that we write ¢ before « to signify that « is multiplied
by (or operated on by) ¢, not ¢ multiplied by «.

This remark is of extreme importance in quaternions, for, as we shall soon see, the Commu-
tative Law does not generally apply to the factors of a product.

We have also, by §847, 48,

q=TqUq="UqTq
where, as before, Tq depends merely on the relative lengths of o and 5, and Uq depends
solely on their directions.

Thus, if a; and 81 be vectors of unit length parallel to o and S respectively,

Tﬁ =TH/Tar =1, U& =Up/Uar = Uﬁ
a1 o a

As will soon be shown, when « is perpendicular to /3, i.e. when the versor of the quotient is
quadrantal, it is a unit-vector.

50. We must now carefully notice that the quaternion which is the quotient when S is
divided by « in no way depends upon the absolute lengths, or directions, of these vectors.
Its value will remain unchanged if we substitute for them any other pair of vectors which

(1) have their lengths in the same ratio,
(2) have their common plane the same or parallel,
and (3) make the same angle with each other.

Thus in the annexed figure



4.4. PRODUCTS AND QUOTIENTS OF VECTORS 75

0B _ OB
0.4, OA

if, and only if,

0O1B; _ OB
(1) 655 = o2

(2) plane AOB parallel to plane A0, B
(3) LAOB = ZA,0,B,

[Equality of angles is understood to include concurrency of rotation. Thus in the annexed
figure the rotation about an axis drawn upwards from the plane is negative (or clock- wise)
from OA to OB, and also from O;A; to O1B.]

It thus appears that if

B=qa, 6=qy
the vectors a, 3, v, § are parallel to one plane, and may be repre sented (in a highly extended
sense) as proportional to one another, thus: —

B:a=4§:v

And it is clear from the previous part of this section that this may be written not only in
the form

a:f=v:6
but also in either of the following forms: —

yia=4§:0
a:y=p:6
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While these proportions are true as equalities of ratios, they do not usually imply equalities
of products.

Thus, as the first of these was equivalent to the equation

)
Bl g apat=sy =g
& Y
the following three imply separately, (see next section)
a vy 47 06 o B
S =<5=4q , —=Z=T —-==-=T
g 0 a p )

or, if we please,
af =y =q i yaT =08 =T =80 =t

where r is a new quaternion, which has not necessarily anything (except its plane), in common
with gq.

But here great caution is requisite, for we are not entitled to conclude from these that

ad = By, &ec.

This point will be fully discussed at a later stage. Meanwhile we may merely state that from

we are entitled to deduce a number of equivalents such as

af o=~ ora=~0"16,0or 71 =a 1y, &c

51. The Reciprocal of a quaternion ¢ is defined by the equation

-1

1 1 o
-q=q =1=q6=qqe

q
Hence if
— =gq,or
f=qa

we must have

a 1

i
For this gives

SB=q"qa

B

and each member of the equation is evidently equal to .. Or thus: —

B =qua
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Operate by ¢~ *

¢ =
Operate on 81
qfl — Oéﬁil —

| ™Ie

Or, we may reason thus: — since ¢ changes OA to OA, ¢~ must change OB to OA, and is
therefore expressed by 3 (§49).

The tensor of the reciprocal of a quaternion is therefore the reciprocal of the tensor; and
the versor differs merely by the reversal of its representative angle. The versor, it must
be remembered, gives the plane and angle of the turning — it has nothing to do with the
extension.

[Remark. In §§49-51, above, we had such expressions as g = Ba~!. We have also met
with a~!8. Cayley suggests that this also may be written in the ordinary fractional form by
employing the following distinctive notation: —

B Bl

- = 50471 = 9
a |

a g = |£

al

(Tt might, perhaps, be even simpler to use the solidus as recommended by Stokes, along with
an obviously correlative type:— thus,

g _ _
= —Ba"' = Bja,a B =ap
I have found such notations occasionally convenient for private work, but I hesitate to in-
troduce changes unless they are abso lutely required. See remarks on this point towards the
end of the Preface to the Second Edition reprinted above.]

52. The Conjugate of a quaternion ¢, written K¢, has the same tensor, plane, and angle,
only the angle is taken the reverse way; or the versor of the conjugate is the reciprocal of
the versor of the quaternion, or (what comes to the same thing) the versor of the reciprocal.

B

]
Thus, if OA, OB, OA’ | lie in one plane, and if OA’ = OA, and ZA'OB = ZBOA, we have
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, and
OB
= congugate of ¢ = K
o gug q=Kq
By last section we see that
Kq=(Tq)’q"
Hence qKq= Kqq = (Tq)?

This proposition is obvious, if we recollect that the tensors of ¢ and K¢ are equal, and
that the versors are such that either annuls the effect of the other; while the order of their
application is indifferent. The joint effect of these factors is therefore merely to multiply
twice over by the common tensor.

53. It is evident from the results of §50 that, if & and 8 be of equal length, they may be
treated as of unit-length so far as their quaternion quotient is concerned. This quotient is
therefore a versor (the tensor being unity) and may be represented indifferently by any one
of an infinite number of concurrent arcs of given length lying on the circumference of a circle,
of which the two vectors are radii. This is of considerable importance in the proofs which
follow.

OB
Thus the versor 5 may be represented in magnitude, plane, and currency of rotation (§50)

by the arc AB, which may in this extended sense be written AB.

! may be represented by A; By which is equal to (and concur-
1

And, similarly, the versor

—

rent with) AB if
£LA,0B, = LAOB

i.e. if the versors are equal, in the quaternion meaning of the word.

54. By the aid of this process, when a versor is represented as an arc of a great circle on the
unit-sphere, we can easily prove that quaternion multiplication is not generally commutative.
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f_‘??‘

\Py

(/] _
Thus let ¢ be the versor AB or —
OA

, where O is the centre of the sphere.

Take BAC’ = AAB, (which, it must be remembered, makes the points A, B, C, lie in one great
oC

circle), then ¢ may also be represented by o5

OB OF

— O —.

OD OB

[The line OB in the figure is definite, and is given by the intersection of the planes of the

two versors.]

Now rOD = OB, and ¢qOB = OC.
Hence qrOD = OC,

In the same way any other versor r may be represented by DB or BE and by

or qr = oD’ and may therefore be represented by the arc DC' of a great circle.

But rq is easily seen to be represented by the arc AAE.
For gOA = OB, and rOB = OF,
OF

whence 7qOA = OF. and rq = —.
OA

Thus the versors rq and gr, though represented by arcs of equal length, are not generally in
the same plane and are therefore unequal: unless the planes of ¢ and r coincide.

Remark. We see that we have assumed, or defined, in the above proof, that ¢.ra = gr.c.
and r.qa = rq.« in the special case when qa, ra, g.ra and r.qa are all vectors.

55. Obviously CB is Kq, BD is Kr, and CD is K(qr). But CD = BD.CB as we see by
applying both to OC. This gives us the very important theorem

K(qr) = Kr.Kq

i.e. the conjugate of the product of two versors is the product of their conjugates in inverted
order. This will, of course, be extended to any number of factors as soon as we have proved
the associative property of multiplication. (§58 below.)
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56. The propositions just proved are, of course, true of quater nions as well as of versors;
for the former involve only an additional numerical factor which has reference to the length
merely, and not the direction, of a vector (§48), and is therefore commutative with all other
factors.

57. Seeing thus that the commutative law does not in general hold in the multiplication of
quaternions, let us enquire whether the Associative Law holds generally. That is if p, ¢, r
be three quaternions, have we

p.qr = pq.r?

This is, of course, obviously true if p, ¢, » be numerical quantities, or even any of the
imaginaries of algebra. But it cannot be con sidered as a truism for symbols which do not
in general give

pbqg =qp

We have assumed it, in definition, for the special case when r, gr, and pqr are all vectors.
(8§54.) But we are not entitled to assume any more than is absolutely required to make our
definitions complete.

58. In the first place we remark that p, ¢, and » may be considered as versors only, and there-
fore represented by arcs of great circles on the unit sphere, for their tensors may obviously
(§48) be divided out from both sides, being commutative with the versors.

Let AB = p, ED = CA = ¢, and FE = r.

Join BC' and produce the great circle till it meets EF' in H, and make KA H= FAE =r, and
HG = CB = pq (854).

Join GK. Then KG = HG.KH = pq.r.
Join F'D and produce it to meet AB in M. Make

LM = FD, and MN = AB
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and join NL. Then
LN =MN.LM = p.qr

Hence to show that p.qr = pq.r

all that is requisite is to prove that LN, and KG, described as above, are equal arcs of
the same great circle, since, by the figure, they have evidently similar currency. This is
perhaps most easily effected by the help of the fundamental properties of the curves known
as Spherical Conics. As they are not usually familiar to students, we make a slight digression
for the purpose of proving these fundamental properties ; after Chasles, by whom and Magnus
they were discovered. An independent proof of the associative principle will presently be
indicated, and in Chapter VIII. we shall employ quaternions to give an independent proof
of the theorems now to be established.

59.* DEF. A spherical conic is the curve of intersection of a cone of the second degree with
a sphere, the vertex of the cone being the centre of the sphere.

LEMMA. If a cone have one series of circular sections, it has another series, and any two
circles belonging to different series lie on a sphere. This is easily proved as follows.

Describe a sphere, A, cutting the cone in one circular section, C', and in any other point
whatever, and let the side OpP of the cone meet A in p, P ; P being a point in C. Then
PO.Op is constant, and, therefore, since P lies in a plane, p lies on a sphere, a, passing
through 0. Hence the locus, ¢, of p is a circle, being the intersection of the two spheres A
and a.

Let OqgQ be any other side of the cone, ¢ and @ being points in ¢, C respectively. Then the
quadrilateral ¢QPp is inscribed in a circle (that in which its plane cuts the sphere A) and
the exterior

angle at p is equal to the interior angle at Q). If OL, OM be the lines in which the plane
POQ cuts the cyclic planes (planes through O parallel to the two series of circular sections)
they are obviously parallel to pq, QP, respectively; and therefore
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/LOp = /0pq=Z0QP = ZMOQ

Let any third side, OrR, of the cone be drawn, and let the plane OPR cut the cyclic planes
in 0, Om respectively. Then, evidently,

ZIOL = ZLqgpr

/MOm = ZQPR

and these angles are independent of the position of the points p and P, if Q and R be fixed
points.

In the annexed section of the above space-diagram by a sphere whose centre is O, [L, Mm
are the great circles which represent the cyclic planes, PQR is the spherical conic which
represents the cone. The point P represents the line OpP, and so with the others. The
propositions above may now be stated thus,

Arc PL = arc MQ

and, if @ and R be fixed, Mm and [L are constant arcs whatever be the position of P.

60. The application to §58 is now obvious. In the figure of that article we have
FE=KH,ED=CA, HG = CB, LM = FD

Hence L, C, G, D are points of a spherical conic whose cyclic planes are those of AB, FE.

Hence also KG passes through L, and with LM intercepts on AB an arc equal to AB. That
is, it passes through N, or KG and LN are arcs of the same great circle : and they are
equal, for G and L are points in the spherical conic.

Also, the associative principle holds for any number of quaternion factors. For, obviously,

qr.st = qrs.t = &ec., &c.,
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since we may consider qr as a single quaternion, and the above proof applies directly.

61. That quaternion addition, and therefore also subtraction, is commutative, it is easy to
show.

¢ B

For if the planes of two quaternions, ¢ and r, intersect in the line OA, we may take any
vector OA in that line, and at once find two others, OB and OC' such that

OB = qOA
and CO =rOA
And (¢ +7r)OAOB + OC = OC + OB = (r + q)OA

since vector addition is commutative (§27).

Here it is obvious that (q + r)OA, being the diagonal of the parallelogram on OB, OC,
divides the angle between OB and OC in a ratio depending solely on the ratio of the lengths
of these lines, i.e. on the ratio of the tensors of ¢ and r. This will be useful to us in the
proof of the distributive law, to which we proceed.

62. Quaternion multiplication, and therefore division, is distributive. One simple proof of
this depends on the possibility, shortly to be proved, of representing any quaternion as a
linear function of three given rectangular unit- vectors. And when the proposition is thus
established, the associative principle may readily be deduced from it.

[But Hamilton seems not to have noticed that we may employ for its proof the properties of
Spherical Conies already employed
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B d pot P
in demonstrating the truth of the associative principle. ”For continuity we give an outline
of the proof by this process.

Let BA, C A represent the versors of ¢ and r, and be the great circle whose plane is that of
p.
Then, if we take as operand the vector OA, it is obvious that U(q + r) will be represented

by some such arc as DA where B, D, C are in one great circle; for (g + r)OA is in the same
plane as ¢gOA and rOA, and the relative magnitude of the arcs BD and DC' depends solely
on the tensors of ¢ and r. Produce BA, DA, C' A to meet be in b, d, ¢ respectively, and make

Eb= BA,Fd= DA,Ge = CA

Also make l;b = c,lS = ¢y =p. Then E, F, G, A lie on a spherical conic of which BC' and

be are the cyclic arcs. And, because b3 = dd = ¢y, SE, 6F, vG, when produced, meet in
a point H which is also on the spherical conic (§59*). Let these arcs meet BC in J, L, K
respectively. Then we have

J,I‘I = 55 =pUq
LH=Fb6=pU(g+7)
K/\H = C?v =pUr
Also i:J:D:B
and KL=CD

And, on comparing the portions of the figure bounded respectively by HKJ and by ACB
we see that (when considered with reference to their effects as factors multiplying OH and
OA respectively)

pU (g4 + r) bears the same relation to pUq and pUr
that U(q +r) bears to Ug and Ur.
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But T(q+nr)U(g+r)=q+r=TqUq+TrUr.
Hence T(qg+r).pU(q+r) =Tq.pUq+ Tr.pUr;
or, since the tensors are mere numbers and commutative with all other factors,

p(q+7)=pg+pr

In a similar manner it may be proved that
(¢H)p=qp+rp
And then it follows at once that
(p+a)(r+s)=pr+ps+qr+gs

where, by §61, the order of the partial products is immaterial.]

63. By similar processes to those of §53 we see that versors, and therefore also quaternions,

are subject to the index-law
qm.qn — qm+n

at least so long as m and n are positive integers.

The extension of this property to negative and fractional exponents must be deferred until
we have defined a negative or fractional power of a quaternion.

64. We now proceed to the special case of quadrantal versors, from whose properties it
is easy to deduce all the foregoing results of this chapter. It was, in fact, these properties
whose invention by Hamilton in 1843 led almost intuitively to the establishment of the
Quaternion Calculus. We shall content ourselves at present with an assumption, which will
be shown to lead to consistent results ; but at the end of the chapter we shall show that no
other assumption is possible, following for this purpose a very curious quasi-metaphysical
speculation of Hamilton.

65. Suppose we have a system of three mutually perpendicular unit-vectors, drawn from
one point, which we may call for shortness i, j, k. Suppose also that these are so situated
that a positive (i.e. left-handed) rotation through a right angle about i as an axis brings j
to coincide with k. Then it is obvious that positive quadrantal rotation about j will make k
coincide with i; and, about k, will make i coincide with j.

For defniteness we may suppose i to be drawn eastwards, j northwards, and k upwards.
Then it is obvious that a positive (left-handed) rotation about the eastward line (i) brings
the northward line (j) into a vertically upward position (k) ; and so of the others.

66. Now the operator which turns j into k is a quadrantal versor (§53) ; and, as its axis is
the vector i, we may call it i.
Thus

k
E:i,orkzij (1)

Similary we may put

E:j70ri:jk (2>
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and .
%:k,orj:ki (3)

[It may be here noticed, merely to show the symmetry of the system we arc explaining, that
if the three mutually perpendicular vectors i, j, k be made to revolve about a line equally
inclined to all, so that i is brought to coincide with j, j will then coincide with k, and k with
i: and the above equations will still hold good, only (1) will become (2), (2) will become (3),
and (3) will become (1).]
67. By the results of §50 we see that
-j k
ko
i.e. a southward unit- vector bears the same ratio to an upward unit-vector that the latter
does to a northward one; and therefore we have

Thus

E:z‘,or —j=ik (4)
Similary t

~ =J.or —k=ji (5)
and .

e kor —i=kj (6)

J

68. By (4) and (1) we have

—j =ik =i(ij) (by the assumption in §54) =i%j

Hence

i?=—1 (7)
Arid in the same way, (5) and (2) give

=1 (8)
and (6) and (3)

E* = -1 (9)

Thus, as the directions of i, j, k are perfectly arbitrary, we see that the square of every
quadrantal versor is negative unity.

[Though the following proof is in principle exactly the same as the foregoing, it may perhaps
be of use to the student, in showing him precisely the nature as well as the simplicity of the
step we have taken.
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A" —aqx O (A A
Let ABA’ be a semicircle, whose centre is 0, and let OB be perpendicular to AOA’.

B Al
Then % = ¢ suppose, is a quadrantal versor, and is evidently equal to g—B
8650, 53. Hence

, OA' OB OA
q = —_— = = —1]
OB OA 0OA

69. Having thus found that the squares of i, j, k are each equal to negative unity ; it only
remains that we find the values of their products two and two. For, as we shall see, the result
is such as to show that the value of any other combination whatever of ij, k (as factors of a
product) may be deduced from the values of these squares and products.

Now it is obvious that

(i.e. the versor which turns a westward unit-vector into an upward one will turn the upward
into an eastward unit) ; or

k = j(—i) = —ji (10)
Now let us operate on the two equal vectors in (10) by the same versor, i, and we have
ik =i(—ji) = —ji

But by (4) and (3)

tk=—j=—ki
Comparing these equations, we have
—iji=—ki
or, §54 (end), ij=k
and symmetry gives jk =1 (11)
ki = j

The meaning of these important equations is very simple ; and is, in fact, obvious from our
construction in §54 for the multiplication of versors ; as we see by the annexed figure, where
we must remember that i, j, k are quadrantal versors whose planes are at right angles, so
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that the figure represents a hemisphere divided into quadrantal triangles. [The arrow-heads
indicate the direction of each vector arc.]

Thus, to show that ij = k, we have, O being the centre of the sphere, N, E, S, W the north,
east, south, and west, and Z the zenith (as in §65) ;

jJOW =0Z
whence ijOW =i0Z = OS = kOW
* The negative sign, being a mere numerical factor, is evidently commutative with j indeed
we may, if necessary, easily assure ourselves of the fact that to turn the negative (or reverse)

of a vector through a right (or indeed any) angle, is the same thing as to turn the vector
through that angle and then reverse it.

70. But, by the same figure,

iON =0Z
whence jiON = jOZ = OE = —OW = —kON.
71. From this it appears that
ji = —k
kj=—i (12)
ik=—j
and thus, by comparing (11),
ij=—ji=k
jh=—kj=i (1), (12)
ki=—ik=j
These equations, along with
=5 =k =-1 ((7),(8),(9))

contain essentially the whole of Quaternions. But it is easy to see that, for the first group,
we may substitute the single equation

ijk =—1 (13)
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since from it, by the help of the values of the squares of i, j, k, all the other expressions
may be deduced. We may consider it proved in this way, or deduce it afresh from the figure
above, thus o
kON = OW
jkON = jOW =0Z
ijkON = ijOW =i0Z = OS = —ON

72. One most important step remains to be made, to wit the assumption referred to in §64.
We have treated i, j, k simply as quadrantal versors ; and i, j, k as unit-vectors at right
angles to each other, and coinciding with the axes of rotation of these versors. But if we
collate and compare the equations just proved we have

%2 =-1 (7)
i?=-1 (89)

with the other similar groups symmetrically derived from them.

Now the meanings we have assigned to i, j, k are quite independent of, and not inconsistent
with, those assigned to i, j, k. And it is superfluous to use two sets of characters when
one will suffice. Hence it appears that i, j, k may be substituted for i, j, k; in other words,
a unit-vector when employed as a factor may be considered as a quadrantal versor whose
plane is perpendicular to the vector. (Of course it follows that every vector can be treated
as the product of a number and a quadrantal versor.) This is one of the main elements of
the singular simplicity of the quaternion calculus.

73. Thus the product, and therefore the quotient, of two perpendicular vectors is a third
vector perpendicular to both.

Hence the reciprocal (§51) of a vector is a vector which has the opposite direction to that of
the vector, arid its length is the reciprocal of the length of the vector.

The conjugate (§52) of a vector is simply the vector reversed.

Hence, by §52, if a be a vector

(Ta)* = aKa = a(—a) = —a?

74. We may now see that every versor may be represented by a power of a unit-vector.

For, if o be any vector perpendicular to ¢ (which is any definite unit-vector), ia = 3 is a
vector equal in length to «, but perpendicular to both ¢ and «

?a = —«
Ba = —ia=-p
‘o = —if=—-iPa=a

Thus, by successive applications of 7, a. is turned round 7 as an axis through successive right
angles. Hence it is natural to define i as a versor which turns any vector perpendicular to



90 CHAPTER 4. QUATERNIONS

i through m right angles in the positive direction of rotation about i as an axis. Here m may
have any real value whatever, whole or fractional, for it is easily seen that analogy leads us
to interpret a negative value of m as corresponding to rotation in the negative direction.

75. From this again it follows that any quaternion may be expressed as a power of a vector.
For the tensor and versor elements of the vector may be so chosen that, when raised to the
same power, the one may be the tensor and the other the versor of the given quaternion.
The vector must be, of course, perpen dicular to the plane of the quaternion.

76. And we now see, as an immediate result of the last two sections, that the index-law
holds with regard to powers of a quaternion (§63).

77. So far as we have yet considered it, a quaternion has been regarded as the product of a
tensor and a versor: we are now to consider it as a sum. The easiest method of so analysing
it seems to be the following.

n

OB
Let 51 represent any quaternion. Draw BC' perpendicular to OA, produced if necessary.

Then, §19, OB = OC + CB

But, §22, OC = z0OA
where x is a number, whose sign is the same as that of the cosine of ZAOB.

Also, §73, since C'B is perpendicular to OA,
CB = 04

where v is a vector perpendicular to OA and CB, i.e. to the plane of the quaternion; and,
as the figure is drawn, directed towards the reader.
Hence L L L
OB 20A+~0A
_— = ——— =T+
OA OA

Thus a quaternion, in general, may be decomposed into the sum of two parts, one numerical,
the other a vector. Hamilton calls them the SCALAR, and the VECTOR, and denotes them
respectively by the letters S and V prefixed to the expression for the quaternion.
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78. Hence ¢ = Sq + Vg, and if in the above example

then

OB =0C+CB = Sq.0A+Vq.0A?

The equation above gives L L
0C = 5q.0A
CB=Vq.0A

79. If, in the last figure, we produce BC' to D, so as to double its length, and join OD, we
have, by §52,

oD

— =Kq=SKq+ VK

OA q q q
so that OD =0C+CD = SKqOA+VKqOA
Hence OC = SKq.0OA
and CD =VKqOA

Comparing this value of OC with that in last section, we find
SKq=Sq (1)

or the scalar of the conjugate of a quaternion is equal to the scalar of the quaternion.

Again, CD = —CB by the figure, and the substitution of their values gives
VKq=-Vq (2)

or the vector of the conjugate of a quaternion is the vector of the quaternion reversed.

We may remark that the results of this section are simple con sequences of the fact that the
symbols S, V, K are commutative 2.

Thus SKq=KSq= 9q,
since the conjugate of a number is the number itself; and

VKq=KVqg=-Vq(§73)

Again, it is obvious that,

d.Sa4=5) 0 Y. Vi=V) 4

and thence S>Keg=K> q

2 The points are inserted to show that S and V apply only to ¢, and not to gOA.

2 It is curious to compare the properties of these quaternion symbols with those of the Elective Symbols
of Logic, as given in BOOLE’S wonderful treatise on the Laws of Thought; and to think that the same
grand science of mathematical analysis, by processes remarkably similar to each other, reveals to us truths
in the science of position far beyond the powers of the geometer, and truths of deductive reasoning to which
unaided thought could never have led the logician.
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80. Since any vector whatever may be represented by
i+ yj + zk

where z, y, z are numbers (or Scalars), and i, j, k may be any three non-coplanar vectors,
8623, 25 though they are usually understood as representing a rectangular system of unit-
vectors and since any scalar may be denoted by w; we may write, for any quaternion g, the
expression

qg=w+xi+yj+ zk(8§78)

Here we have the essential dependence on four distinct numbers, from which the quaternion
derives its name, exhibited in the most simple form.

And now we see at once that an equation such as
qd=q

where g =w+x'i+yj+2k
involves, of course, the four equations

! ! / /
w=wrr=xy =y 2 ==z

81. We proceed to indicate another mode of proof of the distributive law of multiplication.

We have already defined, or assumed (§61), that

B oy _B+y
(0% (6] (6]
or Ba~l+ya~t = (B+7)a!

and have thus been able to understand what is meant by adding two quaternions.

1

But, writing « for o=+, we see that this involves the equality

(B+7)a=Ba+ya
from which, by taking the conjugates of both sides, we derive
o/(§ ') = o/ + o'y (555)
And a combination of these results (putting 5 + v for o in the latter, for instance) gives

B+7B +9) B+7)B +(B+7)
= BB +B + B+

by the former.
Hence the distributive principle is true in the multiplication of vectors.

It only remains to show that it is true as to the scalar and vector parts of a quaternion, and
then we shall easily attain the general proof.
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Now, if a be any scalar, a any vector, and ¢ any quaternion,
(a+a)q = aq+ aq

For, if 8 be the vector in which the plane of ¢ is intersected by a plane perpendicular to «,
we can find other two vectors, v and § one in each of these planes such that

a=l =8
Ié] 0
And, of course, a may be written %; so that
(a+a)g = 525 =5
= a§+%=0a8+3%8
= aq+ag

And the conjugate may be written
(' +a') =q'd +q'a'(§55)
Hence, generally,
(a+a)(b+ B) =ab+af +ba + af

or, breaking up a and b each into the sum of two scalars, and «, 8 each into the sum of two
vectors,
(a1 +az + ar + a2)(b + b2 + 1 + P2)

= (a1 + a2)(by + b2) + (a1 + a2)(B1 + B2) + (b1 + b2) (a1 + az) + (a1 + a2) (1 + P2)

(by what precedes, all the factors on the right are distributive, so that we may easily put it
in the form)

= (a1 + a1)(b1 + 1) + (a1 + a1)(by + B2) + (az + a2) (b1 + B1) + (a2 + az) (b2 + P2)

Putting a1 + oy =p, ax+tax=¢q, bi+pi =1 b+ B=s,
we have (p+ q)(r +s) = pr+ ps+ qr + gs

82. Cayley suggests that the laws of quaternion multiplication may be derived more directly
from those of vector multiplication, supposed to be already established. Thus, let a be the
unit vector perpendicular to the vector parts of ¢ and of ¢’. Then let

p=qo, o=—a.q

as is evidently permissible, and we have

pa=gqan=—q oc=-—-aaqg =q
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so that —q.¢' = pa.ac = —p.o
The student may easily extend this process.

For variety, we shall now for a time forsake the geometrical mode of proof we have hitherto
adopted, and deduce some of our next steps from the analytical expression for a quaternion
given in §80, and the properties of a rectangular system of unit-vectors as in §71.

We will commence by proving the result of §77 anew.

83. Let
a=xi+yj+ zk

B=ri+yj+2k
Then, because by §71 every product or quotient of 4, j, k is reducible to one of them or to a
number, we are entitled to assume

qzézw—i—fi—i—ﬁj—i—@“k

where w, £, 1, ¢ are numbers. This is the proposition of §80.

[Of course, with this expression for a quaternion, there is no necessity for a formal proof of
such equations as
ptlg+r)=@+q +r

where the various sums are to be interpreted as in §61.
All such things become obvious in view of the properties of i, j ,k.]
84. But it may be interesting to find w, &, 1, { in terms of x, y, 2, ', 3 , 2" .
We have
f = qo
or
2'i+y'j+ 2k = (w+ & +nj + Ck)(wi + yj + zk)
= —(x+ny+C2) + (wr + 1z — ()i + (wy + (z — §2)j + (wz + Ey —na)k

as we easily see by the expressions for the powers and products of ¢, j, k given in §71. But
the student must pay particular attention to the order of the factors, else he is certain to
make mistakes.

This (§80) resolves itself into the four equations

0 = Exr + ny + (z
¥ = wzx + nz — (y
y o= wy — &2 + Cx
7 = w2z + &y — nx

The three last equations give
2 +yy + 22 = w(@® + 9% + 2%)

which determines w.
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Also we have, from the same three, by the help of the first,
g’ +ny +¢2' =0
which, combined with the first, gives

E& _ n_C

ye! — 2y zal —xz xy —yax!

and the common value of these three fractions is then easily seen to be
1
1‘2 + y2 + 2'2

It is easy enough to interpret these expressions by means of ordinary coordinate geometry :
but a much simpler process will be furnished by quaternions themselves in the next chapter,
and, in giving it, we shall refer back to this section.

85. The associative law of multiplication is now to be proved by means of the distributive
(§81). We leave the proof to the student. He has merely to multiply together the factors

wrzit+yj+zk, wrai+yi+2k  andw’ +2"i+y"5+ 2"k

as follows :

First, multiply the third factor by the second, and then multiply the product by the first;
next, multiply the second factor by the first and employ the product to multiply the third:
always remembering that the multiplier in any product is placed before the multiplicand.
He will find the scalar parts and the coefficients of 4, j, k, in these products, respectively
equal, each to each.

86. With the same expressions for «, 3, as in section 83, we have
af = (zi+yj + zk)(«"i +y'j + 2'k)
= —(za’ +yy' +22") + (y2' — 2y )i+ (22’ — 22")j + (zy' — y2')k
But we have also
Ba=—(xz' +yy +22") — (yz' —2¢)i — (22’ — 22")j — (xvy' — y2')k
The only difference is in the sign of the vector parts. Hence
Sapf = Spa (1)
Vap = -Vpa (2)
aff + Ba = 2Sap (3)
aff — Pa=2Vap (4)
af = K.fa (5)
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87. If @ = B we have of course (§25)
r=a, y=y, z==2
and the formulae of last section become
aff = Pa=ao* = —(2® +y* + 2?)
which was anticipated in §73, where we proved the formula
(Ta)? = —a?

and also, to a certain extent, in §25.

88. Now let g and r be any quaternions, then

S.(Sq+Vq)(Sr+Vr)
= S8.(SqSr+ Sr.Vq+ Sq.Vr+VqVr)
= Sq¢Sr+SVqVr

S.qr

since the two middle terms are vectors. Similarly,
S.rq=SrSq+ S.VrVq
Hence, since by (1) of §86 we have
SVqVr=5VrVq

we see that
S.qr = S.rq

a formula of considerable importance.

QUATERNIONS

(1)

It may easily be extended to any number of quaternions, because, r being arbitrary, we may

put for it rs. Thus we have
S.qrs = S.rsq
= S.sqr

by a second application of the process. In words, we have the theorem the scalar of the
product of any number of given quaternions depends only upon the cyclical order in which

they are arranged.

89. An important case is that of three factors, each a vector. The formula then becomes

S.apy = S.0ya = S~yap

But
S.afy = Sa(Spy+Vpy)
= SaVpy since aSP7 is a vector
= —SaV~p by (2) of §86
= —Sa(Sy8+VyB)

= —Sayp
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Hence the scalar of the product of three vectors changes sign when the cyclical order is
altered.

By the results of §§55, 73, 79 we see that, for any number of vectors, we have

K.afy...¢ox = tx¢...vBa

(the positive sign belonging to the product of an even number of vectors) so that
S.apf...ox =+xS.x¢...0a

Similarly
Viaag...ox =FV.xo...pa
Thus we may generalize (3) and (4) of §86 into

25.aB...ox =af...xo £ dpx...La
2VaaB...opx =af...x¢ F ¢x... B«

the upper sign still being used when the -number of factors is even.

Other curious propositions connected with this will be given later (some, indeed, will be found
in the Examples appended to this chapter), as we wish to develop the really fundamental
formulae in as compact a form as possible.

90. By (4) of §86,
2V By = By —~pB

Hence
2V.aVpy = V.a(By —B)

(by multiplying both by «, and taking the vector parts of each side)
= V(apy + Bay = fay — ap)

(by introducing the null term Say — Say).

That is
2V.aV By = V(ap + Ba)y — V(BSay + Vay + Say.f+ Vary.

=V.(25a8)y — 2V B3Saxy
(if we notice that V(Vay.8) = —V.8Vaxy by (2) of §86). Hence
V.aV By =~vSap — BSvya (1)

a formula of constant occurrence.

Adding S5+ to both sides, we get another most valuable formula

V.aBy = aSBy — BSya +ySap (2)

and the form of this shows that we may interchange v and « without altering the right-hand
member. This gives

V.apy = Vyba
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a formula which may be greatly extended. (See §89, above.)

Another simple mode of establishing (2) is as follows :

K.apy = —yBa
s2Vapy = aBfy— K.apy (by §79(2))
= afy+ypa

a(By +78) = (ay +~va) B +vy(aB + Ba)
= 2aSpy—2B8Say+ 2ySap

91. We have also
VVapV~o = =VV~yiVaf by (2) of §86

=0SvVap —vSVap = §S.afy — vS.aBé
= —BSaV~é + aSpV~s = —BS.avyd + aS.5v0

all of these being arrived at by the help of §90 (1) and of §89; and by treating alternately
Vap and V49 as simple vectors.

Equating two of these values, we have
0S.afBy = aS.0vd + BS.yad + vS.aBd (3

a very useful formula, expressing any vector whatever in terms of three given vectors. [This,
of course, presupposes that «, 3, v are not coplanar, §23. In fact, if they be coplanar, the
factor S.a37y vanishes, and thus (3) does not give an expression for §. This will be shown in
§101 below.]

92. That such an expression as (3) is possible we knew already by §23. For variety we may
seek another expression of a similar character, by a process which differs entirely from that
employed in last section.

a, B, v being any three non-coplanar vectors, we may derive from them three others Vag,
V By, Vya and, as these will not be coplanar, any other vector § may be expressed as the
sum of the three, each multiplied by some scalar. It is required to find this expression for 4.

Let
d=xVap+yVEy+ z2Vrya

Then
Své = xS.yap = xS.apfy

the terms in y and z going out, because

SV By =SBy = 5By =+2SB=0

for 42 is (§73) a number.

Similarly
SpB6 = z5.fya = zS.abfy

and
Sad = qS.afy
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Thus
0S.afy =VapBSvyd + VEySad + VyaSpo (4)

93. We conclude the chapter by showing (as promised in §64) that the assumption that the
product of two parallel vectors is a number, and the product of two perpendicular vectors
a third vector perpendicular to both, is not only useful and convenient, but absolutely
inevitable, if our system is to deal indifferently with all directions in space. We abridge
Hamilton s reasoning.

Suppose that there is no direction in space pre-eminent, and that the product of two vectors
is something which has quantity, so as to vary in amount if the factors are changed, and
to have its sign changed if that of one of them is reversed ; if the vectors be parallel, their
product cannot be, in whole or in part, a vector inclined to them, for there is nothing to
determine the direction in which it must lie. It cannot be a vector parallel to them; for by
changing the signs of both factors the product is unchanged, whereas, as the whole system
has been reversed, the product vector ought to have been reversed. Hence it must be a
number. Again, the product of two perpendicular vectors cannot be wholly or partly a
number, because on inverting one of them the sign of that number ought to change; but
inverting one of them is simply equivalent to a rotation through two right angles about the
other, and (from the symmetry of space) ought to leave the number unchanged. Hence the
product of two perpendicular vectors must be a vector, and a simple extension of the same
reasoning shows that it must be perpendicular to each of the factors. It is easy to carry this
farther, but enough has been said to show the character of the reasoning.

4.5 Examples To Chapter 2.

1. It is obvious from the properties of polar triangles that any mode of representing versors
by the sides of a spherical triangle must have an equivalent statement in which they are
represented by angles in the polar triangle.

Show directly that the product of two versors represented by two angles of a spherical triangle
is a third versor represented by the supplement of the remaining angle of the triangle ; and
determine the rule which connects the directions in which these angles are to be measured.

2. Hence derive another proof that we have not generally
bq=qp

3. Hence show that the proof of the associative principle, §57, may be made to depend upon
the fact that if from any point of the sphere tangent arcs be drawn to a spherical conic, and
also arcs to the foci, the inclination of either tangent arc to one of the focal arcs is equal to
that of the other tangent arc to the other focal arc.

4. Prove the formulae
25.afy = apy —yBa

2V.apy = apy +ypa
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5. Show that, whatever odd number of vectors be represented by «, 3, v &c., we have always
V.apyde = V.edyBa
V.apydeCn = Vnledypa, &c.

6. Show that
S.VapVpyVya = —(S.aby)?

V.VapVyVya = VaB(v?SaB — SBySya) + ...

and
V(VapV.VByVya) = (BSay — aSpy)S.afy

7. If a, B, v be any vectors at right angles to each other, show that
(@ + 8% +7°)S.aBy = 'V By + B Vya + 4 Vap
(a2n71 4 527171 +’}/2n71)S.OZB’}/ — OéZnVB’}/ 4 ﬁZnV’YQ +’}/2nVO£B

8. If a, 3, v be non-coplanar vectors, find the relations among the six scalars, z, y, z and &,
71, ¢ which are implied in the equation

ra+yB+ 2y =EVEy +nVya+Vap

9. If a, B, v be any three non-coplanar vectors, express any fourth vector, 4, as a linear
function of each of the following sets of three derived vectors.

Voyap,  Vapy, V.pya

and
VVapVEyVrya, V.VEYV~yaVapB, V.V~yaVaBV gy

10. Eliminate p from the equations
Sap=a, Spp=0b, Syp=c, Sip=d

where «, (3, v, § are vectors, and a, b, ¢, d scalars.

11. In any quadrilateral, plane or gauche, the sum of the squares of the diagonals is double
the sum of the squares of the lines joining the middle points of opposite sides.

4.6 Interpretations And Transformations

94. Among the most useful characteristics of the Calculus of Quaternions, the ease of
interpreting its formulae geometrically, and the extraordinary variety of transformations of
which the simplest expressions are susceptible, deserve a prominent place. We devote this
Chapter to some of the more simple of these, together with a few of somewhat more complex
character but of constant occurrence in geometrical and physical investigations. Others will



4.6. INTERPRETATIONS AND TRANSFORMATIONS 101

appear in every succeeding Chapter. It is here, perhaps, that the student is likely to feel most
strongly the peculiar difficulties of the new Calculus. But on that very account he should
endeavour to master them, for the variety of forms which any one formula may assume,
though puzzling to the beginner, is of the utmost advantage to the advanced student, not
alone as aiding him in the solution of complex questions, but as affording an invaluable
mental discipline.

95. If we refer again to the figure of §77 we see that
OC = 0OBcos AOB
CB = 0OBsin AOB

Hence if
AB=qa, OB=p, and ZAOB=¥4

we have

OB=T8, OA=T«a

OC =Tfcosf, CB=Tpsinb

Hence 5 oc T3

ST 04~ Ta®?
Similarly,

B _CB TS
TVa = 04" Tasm9

Hence, if n be a unit-vector perpendicular to o and 3, and such that positive rotation about
it, through the angle 6, turns « towards 8 or

CB CB
UOA OA «
we have T
Vé = Ts sinf.n  (See, again, §84)
a Ta

96. In the same way, or by putting

af = Saf+Vap
SpBa —VBa
a? (Sg — Vg)

= Ta? (—Sg + Vg)

we may show that
Sapf = -TaTpcosb

TVap =TaoTBsinb

and
Vap =TaTBsinb.n
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where

n=UVaf =U(-Vpa)= UVg

Thus the scalar of the product of two vectors is the continued product of their tensors and
of the cosine of the supplement of the contained angle.

The tensor of the vector of the product of two vectors is the con tinued product of their
tensors and the sine of the contained angle ; and the versor of the same is a unit-vector
perpendicular to both, and such that the rotation about it from the first vector (i. e. the
multiplier) to the second is left-handed or positive.

Hence also TV a3 is double the area of the triangle two of whose sides are «, 3.

97. (a) In any plane triangle ABC we have
AC = AB + BC

Hence,
AC* = SACAC = SAC(AB + BO)

With the usual notation for a plane triangle the interpretation of this formula is
b* = —bccos A — abcos C

or
b=ccosC +ccos A

(b) Again we have, obviously,

VABAC — V.AB(AB+ BO)
= V.AB BC
or
cbsin A = casin B
whence

sinA  sinB  sinC
a b ¢
These are truths, but not truisms, as we might have been led to fancy from the excessive
simplicity of the process employed.

98. From §96 it follows that, if @ and S be both actual (i. e. real and non-evanescent)

vectors, the equation
Sapf =0

shows that cos@ = 0, or that « is perpendicular to 5. And, in fact, we know already that
the product of two perpendicular vectors is a vector.

Again if
VaB =0
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we must have sinf = 0, or « is parallel to 5. We know already that the product of two
parallel vectors is a scalar.

Hence we see that
Saf =0

is equivalent to

a=Vp
where 7 is an undetermined vector; and that

Vapg =0
is equivalent to

a=zf
where z is an undetermined scalar.

99. If we write, as in §§83, 84,
a=1ix+ jy+ kz

B =1ix' +jy + k2

we have, at once, by §86,

Saf = —xx’ —yy — 22
= - (25485 4 25)
where
r = /$2+y2+22, T,:‘/Z'/2+yl2+2’,2
Also

z =z za' — a2 zy = yx'
Vozﬂrr'{y /yiJr —j+ L /y k}
rr rr rr

These express in Cartesian coordinates the propositions we have just proved. In commencing
the subject it may perhaps assist the student to see these more familiar forms for the quater-
nion expressions ; and he will doubtless be induced by their appearance to prosecute the
subject, since he cannot fail even at this stage to see how much more simple the quaternion
expressions are than those to which he has been accustomed.

100. The expression
S.afy

may be written
SV (apB)y

because the quaternion a3y may be broken up into

S(aB)y +Viab)y

of which the first term is a vector.
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But, by §96,

SV (af)y = TaT B sin0Sny
Here Tnp = 1, let ¢ be the angle between 7 and +, then finally

S.apy = —=TaTBTvsinb cos ¢

But as 7 is perpendicular to o and 3, Ty cos ¢ is the length of the perpendicular from the
extremity of v upon the plane of «, 5. And as the product of the other three factors is (§96)
the area of the parallelogram two of whose sides are «, B, we see that the magnitude of
S.aB7, independent of its sign, is the volume of the parallelepiped of which three coordinate
edges are «, [3, 7y; or six times the volume of the pyramid which has «, 3, v for edges.

101. Hence the equation
S.apfy=0

if we suppose a7 to be actual vectors, shows either that
sinf =0

or
cosop =0

i. e. two of the three vectors are parallel, or all three are parallel to one plane.

This is consistent with previous results, for if v = p8 we have
S.afy =pS.aBf?=0
and, if v be coplanar with «,3, we have v = pa 4+ ¢f and

S.afy = S.aB(pa+qB) =0

102. This property of the expression S.afvy prepares us to find that it is a determinant.
And, in fact, if we take o,/ as in §83, and in addition

’)/ — Z'm// +jy”+kz”
we have at once

S.afy = —a"(yz' — zy) —y" (22" — 22) — 2" (zy’ — ya’)

r Yy =z
=—|a o 2
"y

The determinant changes sign if we make any two rows change places. This is the proposition
we met with before (§89) in the form

S.apy = —=8.ay = S5.0ya, &c
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If we take three new vectors
ay = iz + ja’ + ka”

B =iy +jy + ky"
v =iz 42 + k2"

we thus see that they are coplanar if «, 3, v are so. That is, if

S.afy =0
then
S.a181711 =0
103. We have, by §52,
(Tq)> = qKq=(Sq¢+Vq)(Sq—Vq) (§79)

= (S¢)* - (Vq)* Dby algebra
= (Sq)?+ (TVq)* (§73)

If ¢ = afB, we have Kq = Ba, and the formula becomes

af.fa = a’p* = (Sap)? — (Vap)®

In Cartesian coordinates this is

(xQ —|—y2 +Zz)(x'2 —I—y/2 +z/2)
— (w2 +yy + 22 ) + (g — 22 + (20 — 22')? + (wy — ya')?
More generally we have

(T(qr))?> = (Tq)*(Tr)?
= (S.qr)* = (Vgr)?

If we write
g=w+a=w+ir+jy+kz
r=w+p=w+iz' +jy + k7’
this becomes ) ) / )
(W + 2>+ + 2w+ +yi+22?)

= (ww' —zx’ —yy — 22")* + (w2’ +w'z +y2' — 2zy)?

= (zy +w'y + 22’ —x2) + (w2 +w'z + 2y —ya')?
a formula of algebra due to Euler.

104. We have, of course, by multiplication,

(a+pB)=a’+af+Ba+p%=a*>+25aB+ 5% (§86 (3))
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Translating into the usual notation of plane trigonometry, this becomes
& =a® —2abcos C + b?

the common formula.

Again,

Via+B)(a—B)=-VaB+VBa=-2Vas (5§86 (2)
Taking tensors of both sides we have the theorem, the parallelogram whose sides are parallel
and equal to the diagonals of a given parallelogram, has double its area (§96).
Also

S(a+B)(a— ) =a® -

and vanishes only when o? = 32, or Ta = T'8; that is, the diagonals of a parallelogram are
at right angles to one another, when, and only when, it is a rhombus.

Later it will be shown that this contains a proof that the angle in a semicircle is a right
angle.

105. The expression p=afa?
obviously denotes a vector whose tensor is equal to that of 3.

But we have S.Bap =0
so that p is in the plane of «, g

Also we have Sap = Sap

so that 8 and p make equal angles with «, evidently on opposite sides of it. Thus if a be
the perpendicular to a reflecting surface and  the path of an incident ray, —p will be the
path of the reflected ray.

Another mode of obtaining these results is to expand the above expression, thus, §90 (2),
20~ 1SapB — B

2a71Saf — a1 (SaB + Vap)
= a (SaB—-Vap)

p

so that in the figure of §77 we see that if OA = o, and OB = 3, we have OD = p = afa ™!
Or, again, we may get the result at once by transforming the equation to £ = K (a™lp) =K g

106. For any three coplanar vectors the expression

p=apy

is (§101) a vector. It is interesting to determine what this vector is. The reader will easily
see that if a circle be described about the triangle, two of whose sides are (in order) « and
B, and if from the extremity of S a line parallel to v be drawn, again cutting the circle, the
vector joining the point of intersection with the origin of « is the direction of the vector af~.
For we may write it in the form

p=aB’Bly=—(TB) aB 'y = —(7“5)2%V
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. o . . . . .
which shows that the versor ) which turns 3 into a direction parallel to «, turns 7 into

a direction parallel to p. And this expresses the long-known property of opposite angles of
a quadrilateral inscribed in a circle.

Hence if «, 5, v be the sides of a triangle taken in order, the tangents to the circumscribing
circle at the angles of the triangle are parallel respectively to

afy, pBrya, and yofS

Suppose two of these to be parallel, i. e. let
afy = zfya =zayB (§90)

since the expression is a vector. Hence

By =xvB

which requires either
z=1, VyB=0 or+|B

a case not contemplated in the problem; or
r=-1, Spy=0

i. e. the triangle is right-angled. And geometry shows us at once that this is correct.

Again, if the triangle be isosceles, the tangent at the vertex is parallel to the base. Here we
have

zf = apy
or
z(a+7) =ala+7)y

2

whence z = 72 = o2, or Ty = T, as required.

As an elegant extension of this proposition the reader may prove that the vector of the
continued product afvd of the vectorsides of any quadrilateral inscribed in a sphere is
parallel to the radius drawn to the corner («, §). [For, if € be the vector from §, « to £, 7,
afe and eyd are (by what precedes) vectors touching the sphere at «, §. And their product
(whose vector part must be parallel to the radius at «, 0) is

afe.eyd = e*.afvd)

107. To exemplify the variety of possible transformations even of simple expressions, we will
take cases which are of frequent occurrence in applications to geometry.

Thus
T(p+o)=T(p—a)

[which expresses that if

OA=a OA=-a and OP=p
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we have AP =A'P
and thus that P is any point equidistant from two fixed points,] may be written

(p+a)®=(p—a)

or p? +2Sap+a? = p? —2Sap +a?  (§104)
whence Sap=10
This may be changed to

ap+pa=0
or

ap+ Kap=0
sul —o
@

or finally,

TvUL =1

@

all of which express properties of a plane.
Again, Tp=Ta
may be written Tg =1

(s2) - (v2) =1
(p+@)?—=2Sa(p+a)=0
p=(p+a) ' alp+a)
S(p+a)(p—a)=0

or finally,
T.(p+a)(p—a)=2TVap

All of these express properties of a sphere. They will be interpreted when we come to
geometrical applications.

108. To find the space relation among five points.

A system of five points, so far as its internal relations are concerned, is fully given by the
vectors from one to the other four. If three of these be called «, 8, =, the fourth, 4, is
necessarily expressible as xa + y5 + zy. Hence the relation required must be independent of
X, VY, Z.
But

Sad = za? + ySaf + zSay

SB6 = xzSPa  + yB? + 258y

Sy8 = xSya +ySyB + 272 (1)

S06 =062 = xS0 +ySéB  + 2S5y
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The elimination of x, y, z gives a determinant of the fourth order, which may be written

Saa Saf Say Sad
Spa SBB SPy SBO | _ 0
Svya  SvB8  Svyy  S76
Soaw  Sép  Soy  Séo

Now each term may be put in either of two forms, thus
1 —
Spy =5 {B*++" = (B—7)*} = ~TBTycos By

If the former be taken we have the expression connecting the distances, two and two, of five
points in the form given by Muir (Proc. R. S. E. 1889) ; if we use the latter, the tensors
divide out (some in rows, some in columns), and we have the relation among the cosines of
the sides and diagonals of a spherical quadrilateral.

We may easily show (as an exercise in quaternion manipulation merely) that this is the only
condition, by showing that from it we can get the condition when any other of the points is
taken as origin. Thus, let the origin be at «, the vectors are «, 8 — «, v — a, § — a. But,
by changing the signs of the first row, and first column, of the determinant above, and then
adding their values term by term to the other rows and columns, it becomes

S( —a)(-=a) S( —)(f-a) S( —a)(y—a) S( —a)(0—

(8- @)
SB-a)(-a) S(B-a)(f-a) SE-a)y-—a) SB-a)0-a)
S(y=a)(=a) S(y-a)(f-a) S(y-a)ly—-a) Sky-a)(d-a)
S@E—a)(-=a) SO-a)B-a) SE-a)(y—a) S0O-a)i-a)

which, when equated to zero, gives the same relation as before. [See Ex. 10 at the end of
this Chapter.]
An additional point, with € = 2’a 4+ ¢/ + 2z’ gives six additional equations like (1) ; i. e.
Sae = a'a? +y'SafB  +z2'Say
SBe =z'SBa +y'B? +2'SBy
Sve =a'Sya +yY'SyB +24?
Sde =a'Soa +y' Sop +2'Sdy

=xSea +ySef  +zSey

¢ =a'Sae +y'SBe +2'Sve

from which corresponding conclusions may be drawn.

Another mode of solving the problem at the head of this section is to write the identity

Zm(a —0)% = ZmaQ - sSﬂZma—i—@QZm
where the ms are undetermined scalars, and the as are given vectors, while 6 is any vector

whatever.

Now, provided that the number of given vectors exceeds four, we do not completely determine
the ms by imposing the conditions

Zsz, Zmozz()
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Thus we may write the above identity, for each of five vectors successively, as

Smla—a1)? = Y ma?
Smla—a)? = Y ma?

Smla—a,)? = i.ma2

Take, with these, >m=0
and we have six linear equations from which to eliminate the ms. The resulting determinant
is

ar—a ag—a2 a;—a3 . o —a?
ar—ad az—a? az—a3 . ax—a?
2
g ma” =0
as—a? as—a as—a2 . az—ai 1
1 1 . . 1 0

This is equivalent to the form in which Cayley gave the relation among the mutual distances
of five points. (Camb. Math. Journ. 1841.)

109. We have seen in §95 that a quaternion may be divided into its scalar and vector parts

as follows: T
b _ Sé + Vé = —B(cose—i— esin6)
o o « To

B

where 6 is the angle between the directions of a and § and ¢ = UV — is the unit-vector

@
perpendicular to the plane of o and 8 so situated that positive (i.e. left-handed) rotation
about it turns « towards

Similarly we have (§96)
af =Saf+Vap
=TaTp(—cosb + esin )

f and € having the same signification as before.

110. Hence, considering the versor parts alone, we have

Ug = cosf + esinf

Similarly

U% =cos¢ + esing

¢ being the positive angle between the directions of v and 3, and € the same vector as before,
if a, B, v be coplanar.

Also we have

U% = cos(0 + ¢) + esin(0 + ¢)

But we have always

Rl

x
o

@[
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and therefore

Y B

gl
U
B

UL

(0% (0%

U
or
cos(¢ + 0) + esin(¢p + 0) = (cos ¢ + esin ¢)(cos § + esin §)
= cos ¢ cos§ — sin ¢ sin 6 + €(sin ¢ cos 6 + cos P sin 6)

from which we have at once the fundamental formulae for the cosine and sine of the sum of
two arcs, by equating separately the scalar and vector parts of these quaternions.

And we see, as an immediate consequence of the expressions above, that
cosmb + esinmf = (cos 6 + esinh)™

if m be a positive whole number. For the left-hand side is a versor which turns through the
angle m# at once, while the right-hand side is a versor which effects the same object by m
successive turn ings each through an angle 6. See §§8, 9.

0
111. To extend this proposition to fractional indices we have only to write — for 6, when
n

we obtain the results as in ordinary trigonometry.

From De Moivre’s Theorem, thus proved, we may of course deduce the rest of Analytical
Trigonometry. And as we have already deduced, as interpretations of self-evident quaternion
transformations (§§97, 104), the fundamental formulae for the solution of plane triangles, we
will now pass to the consideration of spherical trigonometry, a subject specially adapted for
treatment by qua ternions; but to which we cannot afford more than a very few sections.
(More on this subject will be found in Chap. XI in connexion with the Kinematics of
rotation.) The reader is referred to Hamilton s works for the treatment of this subject by
quaternion exponentials.

112. Let «, B, v be unit-vectors drawn from the centr to the corners A, B, C of a triangle
on the unit-sphere. Then it is evident that, with the usual notation, we have (§96),

Saf = —cosc, SBy=—cosa, Sya=—cosb
TVap =sinc, TVPy=sina, TVya=sinb

Also UV ap, UV B, UV~ya are evidently the vectors of the corners of the polar triangle.

Hence
S.UVaBUV By = cos B, &c.

TV.UVapBUV vy =sin B, &c.
Now (§90 (1)) we have

SVapVpy = S.aV(BVEy)
= —SapSpy+ B2Say

Remembering that we have

SVapV By =TVapTVEyS.UVapUV Gy
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we see that the formula just written is equivalent to
sinasinccos B = —cosacosc+ cosb

or
cosb = cosacosc+ sinasinccos B

113. Again,
VVapV By =—BSafy
which gives
TVVapV By =TS.afy=TS.aVpy=TS.8Vya=TS~Vap
or
sin a sin ¢sin B = sin a sin p, = sin bsin p, = sin c¢sin p,
where p, is the arc drawn from A perpendicular to BC, &c. Hence
sinp, = sincsin B

. sinasinc .
sinpp = ———sin B
sin b

sinp, = sinasin B
114. Combining the results of the last two sections, we have
Vap.VBy=sinasinccos B — Bsinasincsin B
= sinasinc(cos B — 3sin B)

Hence UVaBVpy = (cos B— fsin B)
and UV~BVBa = (cos B + Bsin B)

These are therefore versors which turn all vectors perpendicular to OB negatively or posi-
tively about OB through the angle B.

[It will be shown later (§119) that, in the combination
(cos B+ fsin B)(  )(cos B — fsin B)
the system operated on is made to rotate, as if rigid, round the vector axis § through an
angle 2B.]
As another instance, we have
sin B
cos B

tan B =

_ TV.VaBV By
S VapVpy

1 V.VapV By
S.VapV By

B S.afy B
Say + SaBSBy

= —ﬁ_

&e
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The interpretation of each of these forms gives a different theorem in spherical trigonometry.

115. Again, let us square the equal quantities
V.afy and  aSpy— fSay +vySap

supposing «, 3, v to be any unit-vectors whatever. We have

—(V.aBy)? = 828~ + S%ya + S%ap + 256ySyaSaf
But the left-hand member may be written as

T?.aBy — S%.aBy

whence

1—S%aBy = 5?8y + S?va + S%af + 258vSyaSaB

or

2a—cos’bh—cos® c+ 2cosacosbcosc

1 — cos
=sinasin®p, = &ec.
= sin?asin? bsin® C = &ec.
all of which are well-known formulae.

116. Again, for any quaternion,
qg=295¢+Vq

so that, if n be a positive integer,

_ n.n—1 n—
q" = (89" +n(S9)" Vg + —5—(59)" (Vg + ..
From this at once
nn—1

S.q¢" = (Sq)" — (Sq)"~*T*Vq

1.2

nn—1ln—2n—3

531 (Sq)"*T*(Vq) — &c.,

nn—1n-—2

V" = Vg |n(Sq)" " - =3

(Sq)" 3TV q + &c.,

If ¢ be a versor we have
q=cosu + Osinu

so that
S.q" = (cosu)" — n'T(COS u)" 2 (sinu)? + ...
= Ccos nu;
V.g" =0sinu [n(cosu)" ! — @(cos u)" 3 (sinu)? + ...

1.2.3

= fsin nu;
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as we might at once have concluded from §110.

Such results may be multiplied indefinitely by any one who has mastered the elements of
quaternions.

117. A curious proposition, due to Hamilton, gives us a quaternion expression for the
spherical excess in any triangle. The following proof, which is very nearly the same as one of
his, though by no means the simplest that can be given, is chosen here because it incidentally
gives a good deal of other information. We leave the quaternion proof as an exercise.

Let the unit-vectors drawn from the centre of the sphere to A, B, C, respectively, be «, £,
~. It is required to express, as an arc and as an angle on the sphere, the quaternion

Baly

The figure represents an orthographic projection made on a plane perpendicular to . Hence
C' is the centre of the circle DFEe. Let the great circle through A, B meet DFEe in F, e, and

let DE be a quadrant. Thus DFE represents 7 (§72). Also make EF = AB = Ba~! Then,
evidently,

DF = Ba~ly
which gives the arcual representation required.
Let DF cut Fe in G. Make Ca = EG, and join D, a, and a, F. Obviously, as D is the pole
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of Fe, Da is a quadrant ; and since EG = Ca, Ga = EG, a quadrant also. Hence a is the
pole of DG, and therefore the quaternion may be represented by the angle DaF'.

Make Cb = Ca, and draw the arcs Paf, Pba from P, the pole of AB. Comparing the
triangles Eba and eaf3, we see that Ea = ef. But, since P is the pole of AB, Ffa is a right
angle: and therefore as Fa is a quadrant, so is F'/5. Thus AB is the complement of Fa or

Be, and therefore
aff =2AB

Join bA. and produce it to ¢ so that Ac = bA; join ¢, P, cutting AB in o. Also join ¢, B,
and B, a.

Since P is the pole of AB, the angles at o are right angles; and therefore, by the equal
triangles baA, coA, we have

aA = Ao
But

af =2AB
whence

oB = Bf

and therefore the triangles coB and Baf are equal, and ¢, B, a lie on the same great circle.

Produce cA and ¢B to meet in H (on the opposite side of the sphere). H and c¢ are diamet-
rically opposite, and therefore ¢P, produced, passes through H.

Now Pa = Pb = PH, for they differ from quadrants by the equal arcs af, ba, oc. Hence
these arcs divide the triangle Hab into three isosceles triangles.

But
/PHb+ /PHA = ZaHb = Zbca
Also
ZPab=m— ZLecab— LPaH
/Pba = LPab=m— Zcba — LPbH
Adding,

2/Pab =21 — Zcab — Zcba — ZLbca
= 7 — (spherical excess of abc)

But, as ZFaf and ZDae are right angles, we have
angle of fa~ 'y = ZFaD = Bae = ZPab

1
=T g(spherical excess of abe)

2
[Numerous singular geometrical theorems, easily proved ab initio by quaternions, follow from
this: e.g. The arc AB, which bisects two sides of a spherical triangle abc, intersects the base
at the distance of a quadrant from its middle point. All spherical triangles, with a common
side, and having their other sides bisected by the same great circle (i.e. having their vertices
in a small circle parallel to this great circle) have equal areas, &c. |
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118. Let Oa = o/, Ob =, Oc = v/, and we have

() (2)' (2) = Cacabe
= Cf'\a.BAA
EG.FE = FG

But FG is the complement of DF. Hence the angle of the quaternion

1 1 1
O/ 2 B/ 2 ,-Y/ 2
7) ) @
is half the spherical excess of the triangle whose angular points are at the extremities of the

unit-vectors o, 3, and ~'.

[In seeking a purely quaternion proof of the preceding proposi tions, the student may com-
mence by showing that for any three unit-vectors we have

5704__ —1.)2
aBy " (Ba™"7)

The angle of the first of these quaternions can be easily assigned; and the equation shows
how to find that of Ba 1.

Another easy method is to commence afresh by forming from the vectors of the corners of a
spherical triangle three new vectors thus:

2\ 2
Ogl(ﬁ+7> . QL &C.

(07

Then the angle between the planes of «, 8’ and 7/, a; or of 8, 7' and o/, 3; or of , &’ and
B, « is obviously the spherical excess.

But a still simpler method of proof is easily derived from the composition of rotations.]

119. It may be well to introduce here, though it belongs rather to Kinematics than to
Geometry, the interpretation of the operator

q( g

By a rotation, about the axis of ¢, through double the angle of ¢, the quaternion r becomes
the quaternion grq—"' . Its tensor and angle remain unchanged, its plane or axis alone varies.
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@
c’
r rq
B <7 8
?.?.-I'x ?'_rf‘.!

P
A glance at the figure is sufficient for the proof, if we note that of course T.qrq~! = Tr, and
therefore that we need consider the versor parts only. Let @ be the pole of q.

AAB:q, AB l'=¢t, BC =r

Join C’A, and make AC = C,’\A. Join CB.

Then CAB is qrg~1, its arc CB is evidently equal in length to that of », B'C’; and its plane
(making the same angle with B’ B that that of B’C” does) has evidently been made to revolve
about @, the pole of ¢, through double the angle of ¢.

It is obvious, from the nature of the above proof, that this operation is distributive; i.e. that

qir+s)g ' =qrqg " +qsq?

If 7 be a vector, = p, then gpg~! (which is also a vector) is the result of a rotation through
double the angle of g about the axis of ¢. Hence, as Hamilton has expressed it, if B represent
a rigid system, or assemblage of vectors,

qBg™!

is its new position after rotating through double the angle of ¢ about the axis of q.
120. To compound such rotations, we have

1 1

r.qBq tort =rq.B.(rq)”

To cause rotation through an angle ¢-fold the double of the angle of ¢ we write
qt Bq—t
To reverse the direction of this rotation write

q 'Bq¢'
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To translate the body B without rotation, each point of it moving through the vector a, we
write o + B.

To produce rotation of the translated body about the same axis, and through the same angle,
as before,
gla+B)g"!

Had we rotated first, and then translated, we should have had

a+qBg™!

From the point of view of those who do not believe in the Moon s rotation, the former of
these expressions ought to be
qaqg ' + B

instead of
qoqt +qBg™"

But to such men quaternions are unintelligible.

121. The operator above explained finds, of course, some of its most direct applications in
the ordinary questions of Astronomy, connected with the apparent diurnal rotation of the
stars. If \ be a unit-vector parallel to the polar axis, and h the hour angle from the meridian,

the operator is
h h h h
(0052—)\sin2) ( )(6082+)\Sin2>

L' ( )L

or

the inverse going first, because the apparent rotation is negative (clockwise).

If the upward line be i, and the southward j, we have
A =1isinl — jcosl

where [ is the latitude of the observer. The meridian equatorial unit vector is
w=1tcosl+ jsinl

and A, p, k of course form a rectangular unit system.

The meridian unit-vector of a heavenly body is
0 =icos(l —d)+ jsin(l — d)
= Asind + pcosd

where d is its declination.

Hence when its hour-angle is h, its vector is

5 = L7YL
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The vertical plane containing it intersects the horizon in
iVid' = jSj& + kSkd'

so that Sk’
tan(azimuth) = 575 (1)

[This may also be obtained directly from the last formula (1) of §114.]

To find its Amplitude, i.e. its azimuth at rising or setting, the hour-angle must be obtained
from the condition
Sis’" =0 (2)

These relations, with others immediately deducible from them, enable us (at once and for
ever) to dispense with the hideous formulae of Spherical Trigonometry.

122. To show how readily they can be applied, let us translate the expressions above into
the ordinary notation. This is effected at once by means of the expressions for A, u, L, and
6 above, which give by inspection

8" = Asind + (pcosh — ksinh) cosd

= x sin d + (fjb cos h k sin h) cos d, and we have from (1) and (2) of last section respectively

sin h cosd
) _ 1
tan(azimuth) coslsind — sinlcosdcosh (1)
cosh+tanltand =0 (2)

In Capt. Weir s ingenious Azimuth Diagram, these equations are represented graphically by
the rectangular coordinates of a system of confocal conics: viz.

x = sin hsecl
y = cos htanl } (3)
The ellipses of this system depend upon [ alone, the hyperbolas upon h. Since (1) can, by

means of (3), be written as
tan(azimuth) = L
tand — y

we see that the azimuth can be constructed at once by joining with the point 0, — tand, the
intersection of the proper ellipse and hyperbola.

Equation (2) puts these expressions for the coordinates in the form

x = seclV1 — tan?tan? d }

y = —tan?ltand

The elimination of d gives the ellipse as before, but that of [ gives, instead of the hyperbolas,
the circles
2 4+ 9% —y(tand — cotd) = 1
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The radius is 1
g(tan d + cot d)

and the coordinates of the centre are

1
0, §(tand — cotd)

123. A scalar equation in p, the vector of an undetermined point, is generally the equation
of a surface; since we may use in it the expression

p =z«

where z is an unknown scalar, and « any assumed unit-vector. The result is an equation to
determine x. Thus one or more points are found on the vector x«, whose coordinates satisfy
the equation; and the locus is a surface whose degree is determined by that of the equation
which gives the values of z.

But a vector equation in p, as we have seen, generally leads to three scalar equations, from
which the three rectangular or other components of the sought vector are to be derived.
Such a vector equation, then, usually belongs to a definite number of points in space. But
in certain cases these may form a line, and even a surface, the vector equation losing as it
were one or two of the three scalar equations to which it is usually equivalent.

Thus while the equation
ap=f
gives at once
p=a'pB

which is the vector of a definite point, since by making p a vector we have evidently assumed

Sapf =0
the closely allied equation
Vap=p
is easily seen to involve
Saf =0
and to be satisfied by
p=a 1+ za

whatever be x. Hence the vector of any point whatever in the line drawn parallel to «
from the extremity of =13 satisfies the given equation. [The difference between the results
depends upon the fact that Sap is indeterminate in the second form, but definite (= 0) in
the first.]

124. Again,
Vap.VpB = (Vap)?
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is equivalent to but two scalar equations. For it shows that Vap and V 3p are parallel, i.e.
p lies in the same plane as « and 3, and can therefore be written (§24)

p=rza+yp

where x and y are scalars as yet undetermined.
We have now
Vap=yVap
Vps=zVas
which, by the given equation, lead to

1
zy=1, or y:;

or finally

1

p=za+—p

x
which (§40) is the equation of a hyperbola whose asymptotes are in the directions of « and
5.
125. Again, the equation

VVagVap=0

though apparently equivalent to three scalar equations, is really equivalent to one only. In
fact we see by §91 that it may be written

—aS.afBp=0

whence, if a be not zero, we have
S.afp=0

and thus (§101) the only condition is that p is coplanar with «, 5. Hence the equation
represents the plane in which a and S lie.

126. Some very curious results are obtained when we extend these processes of interpretation
to functions of a quaternion

qg=w+p
instead of functions of a mere vector p.
A scalar equation containing such a quaternion, along with quaternion constants, gives, as
in last section, the equation of a surface, if we assign a definite value to w. Hence for
successive values of w, we have successive surfaces belonging to a system ; and thus when w

is indeterminate the equation represents not a surface, as before, but a volume, in the sense
that the vector of any point within that volume satisfies the equation.

Thus the equation
(Tq)* = a®

or



122 CHAPTER 4. QUATERNIONS

or
(TP)? = a* — w?

represents, for any assigned value of w, not greater than a, a sphere whose radius is Va2 — w?.
Hence the equation is satisfied by the vector of any point whatever in the volume of a sphere
of radius a, whose centre is origin.

Again, by the same kind of investigation,
(T(q—B))* = a®
where ¢ = w + p, is easily seen to represent the volume of a sphere of radius a described

about the extremity of S as centre.

Also S(q?) = —a? is the equation of infinite space less the space contained in a sphere of
radius a about the origin.

Similar consequences as to the interpretation of vector equations in quaternions may be
readily deduced by the reader.

127. The following transformation is enuntiated without proof by Hamilton (Lectures, p.
587, and Elements, p. 299).

rH(rP)2q ! = Ulrg+ KrKq)

To prove it, let )
7“_1(7“2612)5(1_1 =t

then
Tt=1
and therefore
Kt=t"1
But )
()} = riq
or
r2q2 = riqriq
or
rq = tqrt
Hence
KqKr =t 'KrKqt™*
or

KrKq=1tKqKrt

Thus we have
U(rq+ KrKq) =tU(qr £ KqKr)t

or, if we put
s=U(qr £ KqKr)
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Ks = *+tst

Hence
sKs = (Ts)*> =1 = +stst

which, if we take the positive sign, requires
st ==+1
or
t=4s1'=4UKs
which is the required transformation.

[It is to be noticed that there are other results which might have been arrived at by using the
negative sign above ; some involving an arbitrary unit-vector, others involving the imaginary
of ordinary algebra.]

128. As a final example, we take a transformation of Hamilton’s, of great importance in the
theory of surfaces of the second order.

Transform the expression
(Sap)® + (S8p)* + (Syp)?
in which «, 8, v are any three mutually rectangular vectors, into the form
T(p+pr)\
K2 _ 2
which involves only two vector-constants, ¢, .

[The student should remark here that ¢, %, two undetermined vectors, involve six disposable
constants : and that «, 8, v, being a rectangular system, involve also only six constants.]

{Tp+pr)}> = (p+pr)(pe+rp) (8852,55)
= (> +r)p* + (tprp + pript)
= (> +rK%p?+2S.uprp
= (1—k)?p?>+4SipSkp
Hence ( 2 $108
L— K LpSk
(Sap)* +(580)* + (990)° = (5 —"3a " + 45" it
But

a~?(Sap)® + B72(SBp)* +v72(Svp)* = p*  (§§25,73).
Multiply by 82 and subtract, we get
82 32 (L — k)2 SipS
(152 wonr = (G =1) e = {1} # 47

o?

The left side breaks up into two real factors if 42 be intermediate in value to a? and 2: and
that the right side may do so the term in p? must vanish. This condition gives

(c—r)?
(K2 — 12)2

g =
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and the identity becomes

T ATl BT

Hence we must have
2% 32 32
,M:p{a (“w)” (72_1
2K 1 1 32 32 1
_r 2l e v
2—2  p a2 ) " N\ \ 52

where p is an undetermined scalar.

To determine p, substitute in the expression for 42, and we find

>~
sy
[}
|
IS
L~
=
|
N
N
I

2 2
p—1) (@ -8)+ (p+1) (82—
= (PP ) (@2 =17 = 2(a% 4+ ) + 48

Thus the transformation succeeds if

1 2(a? 442
Pt = ( 2 72 )
p as —7
which gives
1 a?
- =42
p+ D a2 — 2
~2
—— =42
L o — A2
Hence (k2 — 2)
(k= —1 1
(k? —1®)7' = +TaTy
Again

and therefore

Ta+Ty ([P —o =B
2L = U U
L TaT~y ( ~v2 — a? @t 72 — a? 7
Ta-Ty ( [p-a2,  [2-p
2k = U U
" TaTy < ~v2 — a2 @ ~v2 — a2 v
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Thus we have proved the possibility of the transformation, and determined the transforming
vectors ¢, K.

129. By differentiating the equation

2
(Sap)® + (SBp)® + (Svp)? = (W)

we obtain, as will be seen in Chapter IV, the following,

S.(up + pr)(kp" + p't)
(52 _ L2)2

SapSap' + SBpSPp" + SypSvyp' =

where p also may be any vector whatever.

This is another very important formula of transformation ; and it will be a good exercise
for the student to prove its truth by processes analogous to those in last section. We may
merely observe, what indeed is obvious, that by putting p’ = p it becomes the formula of
last section. And we see that we may write, with the recent values of ¢+ and x in terms of «,
B, 7, the identity

(12 + K2)p + 2Vpr
(k2 — (2)2

aSap+ BSBp +vSvp

(t—K)2p+2(Skp + KSLp)
(k2 — 2)2

130. In various quaternion investigations, especially in such as involve imaginary intersec-
tions of curves and surfaces, the old imaginary of algebra of course appears. But it is to
be particularly noticed that this expression is analogous to a scalar and not to a vector,
and that like real scalars it is commutative in multiplication with all other factors. Thus it
appears, by the same proof as in algebra, that any quaternion expression which contains this
imaginary can always be broken up into the sum of two parts, one real, the other multiplied
by the first power of v/—1. Such an expression, viz.

q=q +v-1¢"

where ¢’ and ¢”’ are real quaternions, is called by Hamilton a BIQUATERNION. [The student
should be warned that the term Biquaternion has since been employed by other writers in
the sense sometimes of a “set” of 8 elements, analogous to the Quaternion 4 ; sometimes
for an expression ¢’ + 6¢” where 6 is not the algebraic imaginary. By them Hamilton s
Biquaternion is called simply a quaternion with non-real constituents.] Some little care is
requisite in the management of these expressions, but there is no new difficulty. The points
to be observed are: first, that any biquaternion can be divided into a real and an imaginary
part, the latter being the product of v/—1 by a real quaternion; second, that this /—1 is
commutative with all other quantities in multiplication; third, that if two biquaternions be

equal, as
q/Jr\/jlq”:r/Jr\/jlr”
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we have, as in algebra,

/ !/ /! 1"
¢=r, ¢ =r

so that an equation between biquaternions involves in general eight equations between
scalars. Compare §80.

131. We have obviously, since v/—1 is a scalar,
S(d + V=T ¢") = 8¢ + V=T 8¢

V(ql+\/j1q//)zvq/+\/jlvq//

Hence (§103) (T 4 V=T g

=(S¢' +v-18¢"+Vq' +vV-1Vq")(S¢ +vV-15¢"-Vq' —vV-1Vq")
— (Sq/+\/jlsq//)2_ (Vq/+\/jlvq//)2
= (Tq)* = (Tq")* + 2v=1 S.q'Kq"

The only remark which need be made on such formulae is this, that the tensor of a biquater-
nion may vanish while both of the component quaternions are finite.

Thus, if
Tq/ — Tq//

and
S.q¢Kq¢ =0

the above formula gives
Td ++vV-14¢")=0

The condition
Sq¢Kq¢ =0

may be written

K¢'=q¢ 'a, o ¢'=-aKq '=- (;z;]/)z
where « is any vector whatever.
Hence
Tq =Tq¢' =TKq" = QT;;/

and therefore
Td(Uq¢ —vV-1UaUq)=(1-vV-1Ua){

is the general form of a biquaternion whose tensor is zero.

132. More generally we have, ¢, r, ¢/, ' being any four real and non-evanescent quaternions,

(@+V-1q)r+V=1r)=q — g7 +V-1(a'" +4qr)
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That this product may vanish we must have

and
Eliminating r’ we have
which gives

i.e.
_ !
g=q«
where « is some unit-vector.
And the two equations now agree in giving

!
—r=ar

so that we have the biquaternion factors in the form
d(a++v-1) and —(a—+V-1)
and their product is
—¢ (a+V-1)(a—+v=1)r
which, of course, vanishes.

[A somewhat simpler investigation of the same proposition may be obtained by writing the

biquaternions as , ,
d(q tq++v—-1) and (rr ' +/=1)
or
¢ ++v-1) and (" ++v-1)1'

and showing that

¢"=—-r"=a where Ta=1]

From this it appears that if the product of two bivectors
p+ov—1 and p +o'vV-1
is zero, we must have /
o lp=—pot=Ua
where o may be any vector whatever. But this result is still more easily obtained by means
of a direct process.

133. It may be well to observe here (as we intend to avail our selves of them in the succeeding
Chapters) that certain abbreviated forms of expression may be used when they are not liable
to confuse, or lead to error. Thus we may write

T?q for (Tq)*
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just as we write
cos?@ for (cosh)?

although the true meanings of these expressions are

T(Tq) and cos(cosf)

The former is justifiable, as T(Tq) = Tq, and therefore T2q is not required to signify the
second tensor (or tensor of the tensor) of g. But the trigonometrical usage is defensible only
on the score of convenience, and is habitually violated by the employment of cos 'z in its
natural and proper sense. Similarly we may write

S%q for (Sq)%, &c.

but it may be advisable not to use
Sq?
as the equivalent of either of those just written; inasmuch as it might be confounded with

the (generally) different quantity
S.qg* or S(¢?)

although this is rarely written without the point or the brackets.

The question of the use of points or brackets is one on which no very definite rules can be
laid down. A beginner ought to use them freely, and he will soon learn by trial which of
them are absolutely necessary to prevent ambiguity.

In the present work this course has been adopted:— the earlier examples in each part of the
subject being treated with a free use of points and brackets, while in the later examples
superfluous marks of the kind are gradually got rid of.

It may be well to indicate some general principles which regulate the omission of these marks.
Thus in S.af or V.af the point is obviously unnecessary:— because Sa = 0, and Va = « so
that the S would annihilate the term if it applied to « alone, while in the same case the V'
would be superfluous. But in S.gr and V.gr, the point (or an equivalent) is indispensable,
for Sq.r, and Vq.r are usually quite different from the first written quantities. In the case
of K, and of d (used for scalar differentiation), the omission of the point indicates that the
operator acts only on the nearest factor:— thus

Kqr = (Kq)r = Kq.r, dqr = (dq)r = dq.r
Kgr = (Kq) r = Kq . 1, dqr = (dq) r=dq.r; while, if its action extend farther, we write
K.qr=K(qr), d.qr=d(qr) &ec.
In more complex cases we must be ruled by the general principle of dropping nothing which

is essential. Thus, for instance
V(pK(dq)V(Vq.r))

may be written without ambiguity as

V(pK(dg)V(Vgq.r))
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but nothing more can be dropped without altering its value.

Another peculiarity of notation, which will occasionally be required, shows which portions
of a complex product are affected by an operator. Thus we write

VSor
if V operates on ¢ and also on 7, but
ViSom

if it operates on 7 alone. See, in this connection, the last Example at the end of Chap. IV.
below.

134. The beginner may expect to be at first a little puzzled with this aspect of the notation;
but, as he learns more of the subject, he will soon see clearly the distinction between such
an expression as

SVapV By

where we may omit at pleasure either the point or the first V without altering the value,
and the very different one

Sap.VEy
which admits of no such changes, without alteration of its value.

All these simplifications of notation are, in fact, merely examples of the transformations of
quaternion expressions to which part of this Chapter has been devoted. Thus, to take a very
simple ex ample, we easily see that

SVapVpy = SVapViy=S.apVpy=SaV.gViy=-SaV.(V3y)s
= SaV(VqB)B = S.aV(vB)B = S.V(vB)Ba = SVyBV Ba
= SHBVBa=S.K(By)VBa=SLyKVBa=—8.87VBa
= S.VABVBa,&c., &c.

The above group does not nearly exhaust the list of even the simpler ways of expressing the
given quantity. We recommend it to the careful study of the reader. He will find it advisable,
at first, to use stops and brackets pretty freely; but will gradually learn to dispense with
those which are not absolutely necessary to prevent ambiguity.

There is, however, one additional point of notation to which the reader s attention should
be most carefully directed. A very simple instance will suffice. Take the expressions

By By

and —
v oo Yo

The first of these is
By tyat =Bat

and presents no difficulty. But the second, though at first sight it closely resembles the first,
is in general totally different in value, being in fact equal to

Brya~ty!
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For the denominator must be treated as one quaternion. If, then, we write

we have

so that, as stated above,

We see therefore that

By
—=q
Yo
By = qya
q=pya 7!
é.l = é = 6—; but not
v oo « ary

4.7 Examples to Chapter 3

al
Y&

1. Investigate, by quaternions, the requisite formulae for changing from any one set of
coordinate axes to another ; and derive from your general result, and also from special
investiga tions, the usual expressions for the following cases:

(a) Rectangular axes turned about z through any angle.

(b) Rectangular axes turned into any new position by rota tion about a line equally inclined

to the three.

(c) Rectangular turned to oblique, one of the new axes lying in each of the former coordi-

nate planes.

2. Point out the distinction between

« (0%

and find the value of their difference.

If

Show also that

and

TB/a=1 and U

a+p

a+p  Vap
a—pF 1+ Sap

a—fp Vap

2

(“+ﬁ>2 and QTP

a+B 1-Sap

5}
«

provided a and 3 be unit-vectors. If these conditions are not fulfilled, what are the true

values 7
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3. Show that, whatever quaternion r may be, the expression
ar+rp
in which a and 8 are any two unit- vectors, is reducible to the form
la+B)+m(ap—1)

where [ and m are scalars.

4 U Tp=Ta=Tp =1, and S.afp = 0 show by direct transformations that

L 1— SapB)

SU(p—a)U(p =) = £/ 5(

Interpret this theorem geometrically.
5. If Saf =0, Ta = TP = 1, show that

(I1+a™)B8=2cos %agﬂ =2Sa%.a%f

6. Put in its simplest form the equation
pSVapVpyVya = aV.VyaVap + bV.VapBV By + V.V yVya

and show that
a=S.pvyp, &ec.

7. Show that any quaternion may in general, in one way only, be expressed as a homogeneous
linear function of four given quaternions. Point out the nature of the exceptional cases. Also
find the simplest form in which any quaternion may generally be expressed in terms of two
given quaternions.

8. Prove the following theorems, and exhibit them as properties of determinants :

(a) S.(a+B)(B+7)(v+a)=25apfy

(b) SVaBVpyVrya = —(5.aB7)?

(c) SV(a+B)B+NV(B+)(y+a)V(y+a)(at ) = —4(S.aby)?
(d) SV(VapVENV(VByVya)V(VyaVap) = —(S.aby)*

(¢) S.0eC = —16(S.apy)*

where
§=VV(a+B)(B+1V(B+7)(7+a))
e=VVEB+7)(+a)V(y+a)(a+p))
(=VV+a)at+B)V(a+B)(B+7))
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9. Prove the common formula for the product of two determinants of the third order in the
form

Saay SBa;  Svyoq
S.afvyS.a161v1 = | Sapf SBBG1 SyH
Say1 SPy Syn

10. Show that, whatever be the eight vectors involved,

Saa; Saf, Savy; Sad;

SBay SBB1 SBy1 SBOL | _ e
Svar SvB Sy Sy | = S.afyS.f11161Sa1 (6 — ) =0
55011 Séﬂl 5671 S661

If the single term Saaq, be changed to Sagaq, the value of the determinant is
5.6’758.5171(515(11(040 — Oé)

State these as propositions in spherical trigonometry.

Form the corresponding null determinant for any two groups of five quaternions : and give
its geometrical interpretation.

11. If, in §102, «, B, v be three mutually perpendicular vectors, can anything be predicated
as to ay, 81, 11?7 If «, B, v be rectangular unit-vectors, what of oy, 81, 117

12. If a, 3, v, o/, 3, 7' be two sets of rectangular unit-vectors, show that

Saa’ = Svp'SBY = SBB' Sy &e. &e.

13. The lines bisecting pairs of opposite sides of a quadrilateral (plane or gauche) are
perpendicular to each other when the diagonals of the quadrilateral are equal.

14. Show that

(c) a?B%y2 + S2.afy = V2.aby
S(V.aBV.graVayaf) = 45a858vSvasS.aby
V.g® = (25%¢ - T*Vq)Vq

(f) qUVq~ = —Sq.UVq+TVq

and interpret each as a formula in plane or spherical trigonometry.

15. If g be an undetermined quaternion, what loci are represented by

D E—

(a) (g™
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(b) (ga~1)* =a’
(c) S.(q—a)? =a?

where a is any given scalar and « any given vector ?

16. If ¢ be any quaternion, show that the equation
Q*=¢
is satisfied, not alone by @ = +¢, but also by
Q=+vV-1(Sq.UVq—-TVq)

(Hamilton, Lectures, p. 673.)

17. Wherein consists the difference between the two equations
2
722 =1 and (£> =-1
@ «a

What is the full interpretation of each, a being a given, and p an undetermined, vector?

18. Find the full consequences of each of the following groups of equations, as regards both
the unknown vector p and the given vectors «, [, :

S.afp=0 Sap=0 Sap =0
(a) (b)) SaBp=0 (¢) S.afp=0
S.Byp =10 SBp =0 S.afyp =0

19. From §§74, 110, show that, if € be any unit-vector, and m any scalar,

m mm .omm

€~ = COS—— + €smn——
2 2

Hence show that if «, £, v be radii drawn to the corners of a triangle on the unit-sphere,

whose spherical excess is m right angles,

atBytafty_ om
B+ a+B v+«

Also that, if A, B, C be the angles of the triangle, we have

2A
™

NEBF AT =1

20. Show that for any three vectors «, 3, v we have
(UaB)? + (UBy)* + (Uay)* + (U.aBfy)? + 4Uavy.SUaBSU By = —2

(Hamilton, Elements, p. 388.)
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21. If ay, as, as, x be any four scalars, and p1, p2, ps any three vectors, show that

(S.p1p2ps)® + (O .a1Vpaps)? + 22> Vpipa)*—

wg(z ai(p2 — p3))? +2 H($2 + Sp1p2 + aiaz)
= 21_[(952 + %) +2Ha2—|—
> {@ +ai + p))(Vpaps)® + 2azas(2” + Spaps) — 2*(p2 — p3)*)}
where H a® = ala3a3
Verify this formula by a simple process in the particular case
ag=ay=a3=x=0
(Ibid)

22. Eliminate p from the equations

V.Bpap =0, Syp=0

and state the problem and its solution in a geometrical form.

23. If p, q, 7, s be four versors, such that
qp = —sr =«

rq=—ps=p

where o and § are unit-vectors; show that
S(V.VsVqV.VrVp) =0

Interpret this as a property of a spherical quadrilateral.

24. Show that, if pq, rs, pr, and gs be vectors, we have
S(V.VpVsV.VqVr) =0
25. If «, B, v be unit-vectors,
VByS.afy = —a(l — 5?By) — B(SavSBr + Saf) — v(SaBSBy + Say)

26. If 4, j, k, 7', j', k', be two sets of rectangular unit-vectors, show that

SVii'Vij'Vkk = (Sif')? — (Sji)?
—  (SjK)? — (Skj')? = &e.

and find the values of the vector of the same product.
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27. If «, 3, v be a rectangular unit-vector system, show that, whatever be A, u, v
AS%io + uS%jy + vS%kB
AS?ky 4+ nS%iB + vS?ja
and
AS2jB 4+ nS%ka 4+ vS?iy
are coplanar vectors. What is the connection between this and the result of the preceding
example ?
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4.8 Axiom Examples

The basic operation for creating quaternions is quatern. This is a quaternion over the
rational numbers.

q:=quatern(2/11,-8,3/4,1)

2 I

Type: Quaternion Fraction Integer
This is a quaternion over the integers.
r:=quatern(1,2,3,4)
1+2¢+35+4k
Type: Quaternion Integer

We can also construct quaternions with complex components. First we construct a complex
number.

b:=complex(3,4)

3+41

Type: Complex Integer

and then we use it as a component in a quaternion.

s:=quatern(3,1/7,b,2)

1
3+?i+@+4ﬂj+2k
Type: Quaternion Complex Fraction Integer

Notice that the 7 component of the complex number has no relation to the ¢ component of
the quaternion even though they use the same symbol by convention.

The four parts of a quaternion are the real part, the ¢ imaginary part, the j imaginary part,
and the k imaginary part. The real function returns the real part.

real q
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11
Type:
The imaglI function returns the ¢ imaginary part.
imagl q
-8
Type:
The imagJ function returns the j imaginary part.
imagJ q
3
4
Type:
The imagK function returns the & imaginary part.
imagK q
1
Type:

137

Fraction Integer

Fraction Integer

Fraction Integer

Fraction Integer

Quaternions satisfy a very fundamental relationship between the parts, namely that

=5 =k =ijk=-1

. This is similar to the requirement in complex numbers of the form a + bi that i = —1.

The set of quaternions is denoted by H, whereas the integers are denoted by Z and the

complex numbers by C.

Quaternions are not commutative which means that in general
AB # BA

for any two quaternions, A and B. So, for instance,

g*r
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437 84 .
1!
r*q
437 84 .
1!

and these are clearly not equal.
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1553
aa /

523
22

Type: Quaternion Fraction Integer

1439 |

599
2207 k
11 7

22

Type: Quaternion Fraction Integer

Complex 2 x 2 matrices form an alternate, equivalent representation of quaternions. These

matrices have the form:

a+ bi
—c+di

K

c+ di
a—bi

where u and v are complex, @ is complex conjugate of u, Z is the complex conjugate of z,

and a,b,c, and d are real.

Within the quaternion each component operator represents a basis element in R?* thus:

0 00
1 01
0 10
0 0 1
1 0 0
0 0 1
0 0 1
0 -1 0
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Clifford Algebra [Fletcher 09]

This is quoted from John Fletcher’s web page [Fletcher 09] (with permission).

The theory of Clifford Algebra includes a statement that each Clifford Algebra is isomor-
phic to a matrix representation. Several authors discuss this and in particular Ablamowicz
[Ablamowicz 98] gives examples of derivation of the matrix representation. A matrix will
itself satisfy the characteristic polynomial equation obeyed by its own eigenvalues. This
relationship can be used to calculate the inverse of a matrix from powers of the matrix it-
self. It is demonstrated that the matrix basis of a Clifford number can be used to calculate
the inverse of a Clifford number using the characteristic equation of the matrix and powers
of the Clifford number. Examples are given for the algebras Clifford(2), Clifford(3) and
Clifford(2,2).

5.1 Introduction

Introductory texts on Clifford algebra state that for any chosen Clifford Algebra there is
a matrix representation which is equivalent. Several authors discuss this in more detail
and in particular, Ablamowicz [Ablamowicz 98] shows that the matrices can be derived for
each algebra from a choice of idempotent, a member of the algebra which when squared
gives itself. The idea of this paper is that any matrix obeys the characteristic equation of
its own eigenvalues, and that therefore the equivalent Clifford number will also obey the
same characteristic equation. This relationship can be exploited to calculate the inverse of
a Clifford number. This result can be used symbolically to find the general form of the
inverse in a particular algebra, and also in numerical work to calculate the inverse of a
particular member. This latter approach needs the knowledge of the matrices. Ablamowicz
has provided a method for generating them in the form of a Maple implementation. This
knowledge is not believed to be new, but the theory is distributed in the literature and the
purpose of this paper is to make it clear. The examples have been first developed using a
system of symbolic algebra described in another paper by this author [Fletcher 01].

139
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5.2 Clifford Basis Matrix Theory

The theory of the matrix basis is discussed extensively by Ablamowicz. This theory will be
illustrated here following the notation of Ablamowicz by reference to Clifford(2) algebra and
can be applied to other Clifford Algebras. For most Clifford algebras there is at least one
primitive idempotent, such that it squares to itself. For Clifford (2), which has two basis
members e; and es, one such idempotent involves only one of the basis members, ey, i.e.

fi=f=50+e)

If the idempotent is mutiplied by the other basis function ey, other functions can be gener-
ated:

1 1
f4=€2f62=§—§€1

Note that fes2f = 0. These four functions provide a means of representing any member of
the space, so that if a general member c is given in terms of the basis members of the algebra

c=ag+ aje1 + ases + azejeg
it can also be represented by a series of terms in the idempotent and the other functions.
c = anfitaafo+aafst+axnfs
_ 1 1 1 1
= 3011+ 3a11€1 + 5a21€2 — 5a21€1€2+
1 1 1 1
5301262 + 5012€1€2 + 5022 — 5G22€1

Equating coefficients it is clear that the following equations apply.

1 1
ap = 3011+ 50622
1 1
a; = 3011 — 5022
1 1
a2 = 5012 + 5021

1 1
as = 3012 — 5021
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The reverse equations can be recovered by multiplying the two forms of ¢ by different com-
binations of the functions f;, f2 and f3. The equation

ficfi = filainfi + a1 fo +arafz + asafa) fi
= fi(ao + are1 + azea + azerer) fi

reduces to the equation

a1 f = (ap+a1)f
and similar equations can be deduced from other combinations of the functions as follows.
ficforarnf = (az+as)f
facfiianf = (az—a3)f
fscfaranf = (a0 —a1)f
If a matrix is defined as
A= ( air a1z >
a1 a22
so that

Af:(anf a12f):(ao+a1 az + as >f

az1f  azf az —asz Qg —aq

then the expression

(1 e) < anf  af > ( ! ) =anfi +azfa+afs +taxnfi=c

a21 f a22f €2

generates the general Clifford object c. All that remains to form the basis matrices is to
make ¢ each basis member in turn, and named as shown.

c=1: Af = i); 2) — B

c=e€ Af = é *Of = Elf

c=ey Af = ?c g) = Eyf
0o f

Evof

c=eey Af = _f 0>
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These are the usual basis matrices for Clifford (2) except that they are multiplied by the
idempotent.

This approach provides an explanation for the basis matrices in terms only of the Clifford
Algebra itself. They are the matrix representation of the basis objects of the algebra in
terms of an idempotent and an associated vector of basis functions. This has been shown
for Clifford (2) and it can be extended to other algebras once the idempotent and the vector
of basis functions have been identified. This has been done in many cases by Ablamowicz.
This will now be developed to show how the inverse of a Clifford number can be obtained
from the matrix representation.

5.3 Calculation of the inverse of a Clifford number

The matrix basis demonstrated above can be used to calculate the inverse of a Clifford
number. In simple cases this can be used to obtain an algebraic formulation. For other
cases the algebra is too complex to be clear, but the method can still be used to obtain the
numerical value of the inverse. To apply the method it is necessary to know a basis matrix
representation of the algebra being used.

The idea of the method is that the matrix representation will have a characteristic poly-
nomial obeyed by the eigenvalues of the matrix and also by the matrix itself. There may
also be a minimal polynomial which is a factor of the characteristic polynomial, which will
have also be satisfied by the matrix. It is clear from the proceding section that if A is a
matrix representation of ¢ in a Clifford Algebra then if some function f(A) = 0 then the
corresponding Clifford function f(c¢) = 0 must also be zero. In particular if f(A) = 0 is the
characteristic or minimal polynomial of A, then f(¢) = 0 implies that ¢ also satisfies the
same polynomial. Then if the inverse of the Clifford number, c¢~! is to be found, then

¢ fle)=0

provides a relationship for ¢! in terms of multiples a small number of low powers of ¢, with
the maximum power one less than the order of the polynomial. The method suceeds unless
the constant term in the polynomial is zero, which means that the inverse does not exist.
For cases where the basis matrices are of order two, the inverse will be shown to be a linear
function of c.

The method can be summed up as follows.

1. Find the matrix basis of the Clifford algebra.

2. Find the matrix representation of the Clifford number whose inverse is required.
Compute the characteristic or minimal polynomial.

Check for the existence of the inverse.

oo W

Compute the inverse using the coefficients from the polynomial.
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Step 1 need only be done once for any Clifford algebra, and this can be done using the
method in the previous section, where needed.

Step 2 is trivially a matter of accumulation of the correct multiples of the matrices.

Step 3 may involve the use of a computer algebra system to find the coefficients of the
polynomial, if the matrix size is at all large.

Steps 4 and 5 are then easy once the coefficients are known.

The method will now be demonstrated using some examples.

Example 1: Clifford (2)

In this case the matrix basis for a member of the Clifford algebra
c=ag+ aje; + agses + azeres
was developed in the previous section as
A= ( ap+a1 az +as >
as —as ag— aq
This matrix has the characteristic polynomial
X272Xa0+agfaffa§+a§ =0

and therefore

X HX?-2Xag+a2—a?—a3+a)=0
and

X' = (200 — X)/(a} — o} — a3+ a3) = 0
which provides a general solution to the inverse in this algebra.

¢! = (2a0 — 0)/(a} — } — a3 + a3) = 0

Example 2: Clifford (3)

A set of basis matrices for Clifford (3) as given by Abalmowicz and deduced are
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Eo = é (1) B = (1) —01
B=(yo) B=(]
2 E1E3:<Oj —Oj)
BBy = ] _Oj E1E2E3:<‘é ?)

for the idempotent

(1 + 61)

="

, where j% = —1.

The general member of the algebra

c3 = ag + a1e1 + ages + aszesz + aia€i1€2 + aizei1e3 + aszezes + ajazereses

has the matrix representation

As = aoky+ a1Ey +asEs + azEs +anE1Eo
+a13E1 B3 + a3y B3 + a123 1 Ea Es

_ ag +ai + jagz + jaiez  az — jaz +aiz — jais
az + jaz —aiz — jaiz  ap — a1 — jaz3 + jaisz

This has the characteristic polynomial

29 9 9 9 9 2 2 2
ag — ai — a3 — a3 + ajy +ajyz + azz — ajag

+  2j(apai2s — a1a23 — a12a3 + a13a2)

— 2(CL0 —|—ja123)X +X2=0

and the expression for the inverse is

Xil = (2a0+2ja123 —X)/
(a§ —af — a3 — a3 + afy + afs + a3z — afoy

+2j(apai23 — a1az3 — a12a3 + a13az))

Complex terms arise in two cases,

a123 # 0
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and
(apai23 — ar1az3 — a12a3 + aizaz) # 0

Two simple cases have real minumum polynomials:

Zero and first grade terms only:

A1 = aoEg+a1FE1 +asFEs +asFs3

_ < a +a1  az—jas )
az+jaz  ag— a1
which has the minimum polynomial
ai — a3 —a3 — a3 —2a0X + X? =0

which gives

X~ =(2a0 — X)/(aj — af — a3 — a3)
Zero and second grade terms only (ie. the even subspace).

Ay = aoBy+ a12B1 By + a13E 1 E3 4 a3 FyEs
ap +jazz a2 — jais
—a12 — jaiz  ap — jass

which has minimum polynomial
ag + a3y +aiy +ay — 200X + X2 =0
giving
X7t = (2a0 — X)/(ag + ajy + af, + af3)

This provides a general solution for the inverse together with two simple cases of wide
usefulness.

Example 3: Clifford (2,2)

The following basis matrices are given by Ablamowicz [Ablamowicz 98|

0100 0 0 1 0
1 0 0 0 0 0 0 -1
Er=119 0 0 1 E2=11 0 0 o
0010 0 -1 0 0
0 -1 0 0 0 0 -1 0
1 0 0 0 0 0 0 1
Es=1 o o0 0 -1 Es=11 o 0o o
0 0 1 0 0 -1 0 0
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for the idempotent
(1 + 6163)(1 + 6163)

/= . :

Note that this implies that the order of the basis members is such that e; and e; have square
+1 and e3 and e4 have square —1. Other orderings are used by other authors. The remaining
basis matrices can be deduced to be as follows.

Second Grade members

0 0 0 -1 1 0 0 0
0 0 1 0 0 -1 0 0
BEx=1 4 1 0 o BiEs=1 49 o 1 o
1 0 0 0 0 0 0 -1
0 0 0 1 0o 0 0 -1
0 0 -1 0 0 0 -1 0
BiEs=1 10 1 o o ErEs = 0 -1 0 0
1 0 0 0 -1 0 0 0
10 0 0 00 0 -1
01 0 0 00 -1 0
EEs=1 19 0 -1 o BsEa=1 1091 0o o
00 0 -1 10 0 0
Third grade members
0 0 -1 0 01 0 0
0o 0 0 -1 10 0 0
EBiEsEs=1 1 o o o BEEs=1 4 o o 1
0 -1 0 0 00 -1 0
00 —1 0 0 1.0 0
00 0 -1 -1 0 0 0
EiEsEs=1 1 4 o o BEsEs=1 o o o 1
01 0 0 0 01 0
Fourth grade member
-1 0 0 0
0 1.0 0
EBREE=| o 41 o
0 0 0 -1
Zero grade member (identity)
1 000
01 0 0
Eo=119 01 0
00 0 1
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The general member of the Clifford (2,2) algebra can be written as follows.

C2 = ao+aier + agzex + azes + ageq+
ai2e1e2 + a13zeies + ajqe1eq + azzezes + a4€2€4 + G34€3€4
+aj23€1€2€3 + G124€1€2€4 + A134€1€3€4 + A234€2€3€4 + A1234€1€2€3€4

This has the following matrix representation.

aop + a3+ a1 — az+ ag —a4—  —a12 + G14—
a24 — 1234 Q124 + G234 @123 — A134 23 — (34

a1 +as+ ap —aiz+ a1z —aiy— —Gz+a4—
a124 — A234 Q24 + Q1234 a23 — A34 a123 — A134

az +a4— —ai2 —ai4— Qg+ aiz— ay —az—
a123 + a134 Q23 + a34 Q24 + Q1234 Q124 — Q234

12 + a14— —02 —a4— a1 +as— ap — a13—
a23 + a34 123 + @134 G124 + @234 Q24 — Q1234

In this case it is possible to generate the characteristic equation using computer algebra.

However, it is too complex to be of practical use. Instead here are numerical examples of
the use of the method to calculate the inverse. For the case where

nl=1+4e;+ex+e3z+eq

then the matrix representation is

1 0 0 0
2 1 00
Ny =FEy+FE +E;+FE;s+Ey= 5 0 1 0
0 -2 2 1

This has the minimum polynomial
X?-2X+1=0
so that
X'1=2-X
and

n1_1=2—’n1=1—61—€2—€3—64
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For
n9 :1+61+62+63+64+6162

the matrix representation is

1 0 0 -1
2 1 1 0
No=I+Ei+ B+ B+ EstEiBa=| 5 | |
1 -2 2 1

This has the minimum polynomial
X*—4X34+8X?-8X —4=0

so that

X3 —4X%48X -8
B 4

X—l

and

1 n3—4n}+8ny—8
n2 = 1

This expression can be evaluated easily using a computer algebra system for Clifford algebra
such as described in Fletcher [Fletcher 01]. The result is

ny' = —0.540.5e; +0.5e5 — 0.5e1e9 — 0.5e1e3
*0.56164 + 0.56263 + 0.56264 — 0.5616263 — 0.5616264

Note that in some cases the inverse is linear in the original Clifford number, and in others it
is nonlinear.

Conclusion

The paper has demonstrated a method for the calculation of inverses of Clifford numbers
by means of the matrix representation of the corresponding Clifford algebra. The method
depends upon the calculation of the basis matrices for the algebra. This can be done from an
idempotent for the algebra if the matrices are not already available. The method provides
an easy check on the existence of the inverse. For simple systems a general algebraic solution
can be found and for more complex systems the algebra of the inverse can be generated
and evaluated numerically for a particular example, given a system of computer algebra for
Clifford algebra.
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Package for Algebraic Function
Fields

PAFF is a Package for Algebraic Function Fields in one variable by Gaétan Haché

PAFF is a package written in Axiom and one of its many purpose is to construct geometric
Goppa codes (also called algebraic geometric codes or AG-codes). This package was written
as part of Gaétan’s doctorate thesis on “Effective construction of geometric codes”: this
thesis was done at Inria in Rocquencourt at project CODES and under the direction of
Dominique LeBrigand at Universit Pierre et Marie Curie (Paris 6). Here is a résumé of the
thesis.

It is well known that the most difficult part in constructing AG-code is the computation of
a basis of the vector space “L(D)” where D is a divisor of the function field of an irreducible
curve. To compute such a basis, PAFF used the Brill-Noether algorithm which was general-
ized to any plane curve by D. LeBrigand and J.J. Risler [Le Brigand 88]. In [Hache 96] you
will find more details about the algorithmic aspect of the Brill-Noether algorithm. Also, if
you prefer, as I do, a strictly algebraic approach, see [Hache 95a]. This is the approach I used
in my thesis ([Hache 96]) and of course this is where you will find complete details about
the implementation of the algorithm. The algebraic approach use the theory of algebraic
function field in one variable : you will find in [Stichtenoth 93] a very good introduction to
this theory and AG-codes.

It is important to notice that PAFF can be used for most computation related to the function
field of an irreducible plane curve. For example, you can compute the genus, find all places
above all the singular points, compute the adjunction divisor and of course compute a basis
of the vector space L(D) for any divisor D of the function field of the curve.

There is also the package PAFFFF which is especially designed to be used over finite fields.
This package is essentially the same as PAFF, except that the computation are done over
“dynamic extensions” of the ground field. For this, I used a simplify version of the notion
of dynamic algebraic closure as proposed by D. Duval [Duval 95].
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Example 1

This example compute the genus of the projective plane curve defined by:

5 23 4
X +YZ +YZ =0

over the field GF(2).
First we define the field GF(2).

K:=PF 2

R:=DMP([X,Y,Z],K)

P:=PAFF (X, [X,Y,Z],BLQT)

We defined the polynomial of the curve.
CiR:=X#%5 + Yxk2kZxk3+YxZkx4

We give it to the package PAFF(K,[X,Y,Z]) which was assigned to the variable P.

setCurve(C) $P
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Chapter 7

CHAPTER 7. INTERPOLATION FORMULAS

Interpolation Formulas

C(u+3,1)

Ay(-3)
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Ay(0)
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A?y(0)

C(u-1,2)

C(u+4.3)

ABy(-4)

C(u+3,3)

ABy(-3)
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Aty(-1)
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The lozenge diagram is a device for showing that a large number of formulas which appear
to be different are really all the same. The notation for the binomial coefficients

(u+k)(u+k-—1D(u+k—=2)---(u+k—n+1)

Clu+k,n)= .

There are n factors in the numerator and n in the denominator. Viewed as a function of u,
C(u+ k,n) is a polynomial of degree n.

The figure above, Hamming [Hamming 62] calls a lozenge diagram. A line starting at a point
on the left edge and following some path across the page defines an interpolation formula if
the following rules are used.

la For a left-to-right step, add
1b For a right-to-left, subtract

2a If the slope of the step is positive, use the product of the difference crossed times the
factor immediately below.

2b If the slope of the step is negative, use the product of the difference crossed times the
factor immediately above

3a If the step is horizontal and passes through a difference, use the product of the difference
times the average of the factors above and below.

3b If the step is horizontal and passes through a factor, use the product of the factor times
the average of the differences above and below.

As an example of rules la and 2a, consider starting at y(0) and going down to the right.
We get, term by term,

y(u) = y(0) + C(u, 1) Ay(0) + C(u, 2)A%y(0) + C(u, 3)A%(0) + -

u(u—1)(y —2)
3!

u(u —1)

2
5 Ay(0) +

=y(0) + uAy(0) + A%y(0) + - --

which is Newton’s formula.

Had we gone up and to the right, we would have used 1a and 2a to get Newton’s backward
formula:

y(u) = y(0) + C(u, 1) Ay(—1) + C(u + 1,2)A%y(—2) + C(u + 2,3) A3y (—3) + - --

(u+1u
2

(u+2)(u+ Du

2

=y(0) +uAy(=1) + Aly(=3) +---

To get Stirling’s formula, we start at y(0) and go horizontally to the right, using rules 3a
and 3b:
APy o4+ Ay

A2y +C(ut1,3)2 82801,

2

2 2

y(u) = y(0)+u
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Ay + Ay_ 2 2-1) APy_o+ Aly_
:yo+u%+%A2y_l+u(u3' ) y22 y-1

If we start midway between y(0) and y(1), we get Bessel’s formula:

Yo + Y1 C(U, 1) + C(u — 17 1)
2 + 2

A%y + A2
Ayo + Clu,2) 217200 |

y(u) =1 5

(u—1) A%y_y + A%y,
2 2

_ Yo + 1
2

1
+ (u— §)Ayo+ “

If we zigzag properly, we can get Gauss’ formula for interpolation:

u(u? — 1)

A1)+

u(lu—1
y(u) = yo + ulyo + %Ny(—l) +



Chapter 8

Groebner Basis

Groebner Basis

155



156 CHAPTER 8. GROEBNER BASIS



Chapter 9

Greatest Common Divisor

Greatest Common Divisor

157



158 CHAPTER 9. GREATEST COMMON DIVISOR



Chapter 10

Polynomial Factorization

Polynomial Factorization

159



160 CHAPTER 10. POLYNOMIAL FACTORIZATION



Chapter 11

Cylindrical Algebraic
Decomposition

Cylindrical Algebraic Decomposition

161



162 CHAPTER 11. CYLINDRICAL ALGEBRAIC DECOMPOSITION



Chapter 12

Pade approximant

Pade approximant

163



164 CHAPTER 12. PADE APPROXIMANT



Chapter 13

Schwartz-Zippel lemma and
testing polynomial identities

Schwartz-Zippel lemma and testing polynomial identities

165



166CHAPTER 13. SCHWARTZ-ZIPPEL LEMMA AND TESTING POLYNOMIAL IDENTITIES



Chapter 14

Chinese Remainder Theorem

Chinese Remainder Theorem

167



168 CHAPTER 14. CHINESE REMAINDER THEOREM



Chapter 15

Gaussian Elimination

Gaussian Elimination

169



170 CHAPTER 15. GAUSSIAN ELIMINATION



Chapter 16

Diophantine Equations

Diophantine Equations

171



172 CHAPTER 16. DIOPHANTINE EQUATIONS



Bibliography

[Ablamowicz 98] Ablamowicz, Rafal
“Spinor Representations of Clifford Algebras: A Symbolic Approach”
Computer Physics Communications Vol. 115, No. 2-3, December 11, 1998, pages 510-
535.

[Altmann 05] Altmann, Simon L.
“Rotations, Quaternions, and Double Groups”
Dover Publications, Inc. 2005 ISBN 0-486-44518-6

[Bertrand 95] Bertrand, Laurent
“Computing a hyperelliptic integral using arithmetic in the jacobian of the curve”
Applicable Algebra in Engineering, Communication and Computing, 6:275-298, 1995

[Bronstein 90c] Bronstein, M.
“On the integration of elementary functions”
Journal of Symbolic Computation 9(2):117-173, February 1990

[Bronstein 91a] Bronstein, M.
“The Risch differential equation on an algebraic curve”
in Watt [Wat91], pp241-246 ISBN 0-89791-437-6 LCCN QA76.95.159 1991

[Bronstein 97] Bronstein, M.
“Symbolic Integration I-Transcendental Functions.”
Springer, Heidelberg, 1997 ISBN 3-540-21493-3 evil-wire.org/arrrXiv/Mathematics/Bronstein, _Symbolic_Integr

[Bronstein 98b] Bronstein, Manuel
“Symbolic Integration Tutorial”
INRIA Sophia Antipolis ISSAC 1998 Rostock

[Bronstein 98] Bronstein, M.
“The lazy hermite reduction”
Rapport de Recherche RR-3562, INRIA, 1998

[Duval 95] Duval, D.
“Evaluation dynamique et cloture algébrique en Axiom”.
Journal of Pure and Applied Algebra, no99, 1995, pp. 267-295.

173



174 BIBLIOGRAPHY

[Fletcher 01] Fletcher, John P.
“Symbolic processing of Clifford Numbers in C++”
Paper 25, AGACSE 2001.

[Fletcher 09] Fletcher, John P.
“Clifford Numbers and their inverses calculated using the matrix representation.”
Chemical Engineering and Applied Chemistry, School of Engineering and Applied Sci-
ence, Aston University, Aston Triangle, Birmingham B4 7 ET, U. K.
Www.ceac.aston.ac.uk/research/staff/jpf/papers/paper24/index.php

[Hathway 1896] Hathway, Arthur S.
“A Primer Of Quaternions”
(1896)

[Hache 95a] Haché, G.
“Computation in algebraic function fields for effective construction of algebraic-
geometric codes”
Lecture Notes in Computer Science, vol. 948, 1995, pp. 262-278.

[Hache 96] Haché, G.
“Construction effective des codes géométriques”
Thése de doctorat de 1'Université Pierre et Marie Curie (Paris 6), Septembre 1996.

[Hamming 62] Hamming R W.
“Numerical Methods for Scientists and Engineers”
Dover (1973) ISBN 0-486-65241-6

[Hermite 1872] Hermite, E.
“Sur l'intégration des fractions rationelles.”
Nouvelles Annales de Mathématiques (2°¢ série), 11:145-148, 1872

[van Hoeij 94] van Hoeij, M.
“An algorithm for computing an integral basis in an algebraic function field”
Journal of Symbolic Computation, 18(4) pp353-363 Oct. 1994 CODEN JSYCEH ISSN
0747-7171

[Le Brigand 88] Le Brigand, D.; Risler, J.J.
“Algorithme de Brill-Noether et codes de Goppa”
Bull. Soc. Math. France, vol. 116, 1988, pp. 231-253.

[Lazard 90] Lazard, Daniel; Rioboo, Renaud
“Integration of rational functions: Rational computation of the logarithmic part”
Journal of Symbolic Computation, 9:113-116:1990

[Liouville 1833a] Liouville, Joseph
“Premier mémoire sur la détermination des intégrales dont la valeur est algébrique”
Journal de I’Ecole Polytechnique, 14:124-148, 1833



BIBLIOGRAPHY 175

[Liouville 1833b] Liouville, Joseph
“Second mémoire sur la détermination des intégrales dont la valeur est algébrique”
Journal de I’Ecole Polytechnique, 14:149-193, 1833

[Mulders 97] Mulders. Thom
“A note on subresultants and a correction to the lazard/rioboo/trager formula in ratio-
nal function integration”
Journal of Symbolic Computation, 24(1):45-50, 1997

[Ostrogradsky 1845] Ostrogradsky. M.W.
“De l'intégration des fractions rationelles.”
Bulletin de la Classe Physico-Mathématiques de I’Acaeémie Impériale des Sciences de
St. Pétersbourg, 1V:145-167,286-300, 1845

[Puffinware 09] Puffinware LLC.
“Singular Value Decomposition (SVD) Tutorial”
www.puffinwarellc.com/p3a.htm

[Risch 68] Risch, Robert
“On the integration of elementary functions which are built up using algebraic opera-
tions”
Research Report SP-2801/002/00, System Development Corporation, Santa Monica,
CA, USA, 1968

[Risch 69a] Risch, Robert
“Further results on elementary functions”
Research Report RC-2042, IBM Research, Yorktown Heights, NY, USA, 1969

[Risch 69b] Risch, Robert
“The problem of integration in finite terms”
Transactions of the American Mathematical Society 139:167-189, 1969

[Risch 79] Risch, Robert
“Algebraic properties of the elementary functions of analysis”
American Journal of Mathematics, 101:743-759, 1979

[Rosenlicht 72] Rosenlicht, Maxwell
“Integration in finite terms”
American Mathematical Monthly, 79:963-972, 1972

[Rothstein 77] Rothstein, Michael
“A new algorithm for the integration of exponential and logarithmic functions”
In Proceedings of the 1977 MACSYMA Users Conference, pages 263-274. NASA Pub
CP-2012, 1977

[Stichtenoth 93] Stichtenoth, H.
“Algebraic function fields and codes”
Springer-Verlag, 1993, University Text.



176 BIBLIOGRAPHY

[Tait 1890] Tait, P.G.
“An Elementary Treatise on Quaternions”
C.J. Clay and Sons, Cambridge University Press Warehouse, Ave Maria Lane 1890

[Trager 76] Trager, Barry
“Algebraic factoring and rational function integration”
In Proceedings of SYMSAC’76 pages 219-226, 1976

[Trager 84] Trager, Barry
“On the integration of algebraic functions”
PhD thesis, MIT, Computer Science, 1984

[Lambov 06] Lambov, Branimir
“Interval Arithmetic Using SSE-2”
in Lecture Notes in Computer Science, Springer ISBN 978-3-540-85520-0 (2006) pp102-
113

[Weil 71] Weil, André
“Courbes algébriques et variétés Abeliennes”
Hermann, Paris, 1971

[Yun 76] Yun, D.Y.Y.
“On square-free decomposition algorithms”
Proceedings of SYMSAC’76 pages 26-35, 1976



Chapter 17

Index

177



Index

elementary function, 7

integration in finite terms, 7

178



	Interval Arithmetic
	Addition
	Sign Change
	Subtraction
	Multiplication
	Multiplication by a positive number
	Multiplication of Two Positive Numbers
	Division
	Reciprocal
	Absolute Value
	Square
	Square Root

	Integration Bro98b
	Rational Functions
	The full partial-fraction algorithm
	The Hermite reduction
	The Rothstein-Trager and Lazard-Rioboo-Trager algorithms

	Algebraic Functions
	The Hermite reduction
	Simple radical extensions
	Liouville's Theorem
	The integral part
	The logarithmic part

	Elementary Functions
	Differential algebra
	The Hermite reduction
	The polynomial reduction
	The residue criterion
	The transcendental logarithmic case
	The transcendental exponential case
	The transcendental tangent case
	The algebraic logarithmic case
	The algebraic exponential case


	Singular Value Decomposition Pu09
	Singular Value Decomposition Tutorial

	Quaternions
	Preface
	Quaternions
	Vectors, and their Composition
	Examples To Chapter 1.
	Products And Quotients of Vectors
	Examples To Chapter 2.
	Interpretations And Transformations
	Examples to Chapter 3
	Axiom Examples

	Clifford Algebra Fl09
	Introduction
	Clifford Basis Matrix Theory
	Calculation of the inverse of a Clifford number
	Example 1: Clifford (2)
	Example 2: Clifford (3)
	Example 3: Clifford (2,2)
	Conclusion


	Package for Algebraic Function Fields
	Interpolation Formulas
	Groebner Basis
	Greatest Common Divisor
	Polynomial Factorization
	Cylindrical Algebraic Decomposition
	Pade approximant
	Schwartz-Zippel lemma and testing polynomial identities
	Chinese Remainder Theorem
	Gaussian Elimination
	Diophantine Equations
	Index

