$SPAD /src/lib openpty.c

The Axiom Team

July 29, 2014

Abstract

Contents

1 Overview

2 include files

3 openpty

4 makeNextPtyNames

5 License

1 Overview

The main function is ptyopen. It simply opens up both sides of a pseudo-
terminal. It uses and saves the pathnames for the devices which were actually
opened.

If it fails it simply exits the program.

ptyopen(controller, server, controllerPath, serverPath)

int *controller; The file descriptor for controller side

int *server; The file descriptor for the server side

char *controllerPath; actually , this is not used anywhere
on return and can be taken out of the
call sequence

char *serverPath;

The path name vars should be declared of size 11 or more

The device /dev/ptmx is the pseudo-terminal master device. The device
/dev/pts is the pseudo-terminal slave device.

The file /dev/ptmx is a character file with a major number of 5 and a minor
number of 2, usually of mode 0666 and owner.group of root.root. It is used to
create a pseudo-terminal master and slave pair.

When a process opens /dev/ptmx, it gets a file descriptor for a pseudo-
terminal master PTM, and a pseudo-terminal slave PTS device is created in the
/dev/pts directory. Each file descriptor obtained by opening /dev/ptmx is
an independent PTM with its own associated PTS, whose path can be found by
passing the descriptor to ptsname.

Before opening the pseudo-terminal slave, you must pass the master’s file
descriptor to grantpt and unlockpt.

Once both the pseudo-terminal master and slave are open, the slave provides
processes with an interface that is identical to that of a real terminal.

Data written to the slave is presented on the master descriptor as input.
Data written to the master is presented to the slave as input.

In practice, pseudo-terminals are used for implementing terminal emulators
such as xterm, in which data read from the pseudo-terminal master is interpreted
by the application in the same way a real terminal would interpret the data,
and for implementing remote login programs such as sshd, in which data read
from the pseudo-terminal master is sent across the network to a client program
that is connected to a terminal or terminal emulator.

Pseudo-terminals can also be used to send input to programs that normally
refuse to read input from pipes (such as su) and passwd.

The Linux support for the pseudo-terminals (known as Unix98 pty naming)
is done using the devpts filesystem, that should be mounted on /dev/pts.

Before this Unix98 scheme, master ptys were called /dev/ptyp0, ..., and
slave ptys /dev/ttypO, ... and one to preallocate a lot of device nodes./citel

2 include files

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>

#if defined(SUN40S5platform) || defined(HP1Oplatform)
#include <stropts.h>
#endif

#include "openpty.h1"

3 openpty

int
ptyopen(int *controller,int * server, char *controllerPath,char * serverPath)
{
#if defined(SUNplatform) ||\
defined (HP9platform) ||\
defined(RTplatform) ||\
defined (AIX370platform) ||\
defined(BSDplatform)
int looking =1, i;
int oflag = O_RDWR; /* flag for opening the pty */

for (i = 0; looking && i < 1000; i++) {
makeNextPtyNames (controllerPath, serverPath);
if (access(controllerPath, 6) != 0) continue;
*controller = open(controllerPath, oflag, 0);
if (xcontroller >= 0) {
xserver = open(serverPath, oflag, 0);
if (*server > 0)
looking = 0;
else
close(*controller);
}
}

if (looking) {
fprintf(stderr, "Couldn’t find a free pty.\n");
exit(-1);
}
return (*controller);
#endif
#if defined RIOSplatform
int fdm,fds;
char *slavename;
/* open master */
if ((fdm=open("/dev/ptc",0_RDWR))<0)
perror("ptyopen failed to open /dev/ptc");
else {
/* get slave name */
if ((slavename = ttyname(fdm))==0)
perror("ptyopen failed to get the slave device name");
/* open slave */
if ((fds = open(slavename, O_RDWR)) < O)
perror("ptyopen: Failed to open slave");
strcpy (serverPath,slavename) ;
*xcontroller=fdm;
*xserver=fds;
}
return(fdm) ;
#endif

Note that since we have no other information we are adding the MACOSX-
platform variable to the list everywhere we find LINUXplatform. This may not
be correct but we have no way to know yet. We have also added the BSDplat-
form variable. MAC OSX is some variant of BSD. These should probably be
merged but we cannot yet prove that.

ok
#if defined(SUN40S5platform) ||\
defined (ALPHAplatform) |\
defined(HP10platform) ||\
defined (LINUXplatform) ||\
defined (MACOSXplatform) ||\
defined(BSDplatform)

extern int grantpt(int);
extern int unlockpt(int);
extern char* ptsname(int);
int fdm,fds;
char *slavename;

/* open master */

if ((fdm = open("/dev/ptmx", O_RDWR)) < 0)
perror ("ptyopen: Failed to open /dev/ptmx");
else {
/* change permission ofslave */
if (grantpt(fdm) < 0)
perror("ptyopen: Failed to grant access to slave device");
/* unlock slave */
if (unlockpt(fdm) < 0)
perror("ptyopen: Failed to unlock master/slave pair");
/* get name of slave */
if ((slavename = ptsname(fdm)) == NULL)
perror("ptyopen: Failed to get name of slave device");
/* open slave */
if ((fds = open(slavename, 0_RDWR)) < O)
perror("ptyopen: Failed to open slave");
else {
#if defined(SUN40S5platform) || defined(HP1Oplatform)
/* push ptem */
if (ioctl(fds, I_PUSH, "ptem") < 0)
perror("ptyopen: Failed to push ptem");
/* push ldterm */
if (ioctl(fds, I_PUSH, "ldterm") < 0)
perror("ptyopen: Failed to push idterm");
#endif
strcpy(serverPath,slavename) ;
*controller=fdm;
*xserver=£fds;
}
}
return(fdm) ;
#endif
#if defined SGIplatform
char x*fds;
fds = _getpty(controller, O_RDWR|O_NDELAY, 0600, 0);
strcpy(serverPath,fds);
if (0 == serverPath)
return(-1);
if (0 > (*server = open(serverPath,0_RDWR))) {
(void) close(*controller);
return(-1);
}

return (*controller);

#endif
}

Prior to using the Unix 98 pty naming scheme the naming scheme used
16 ptyp/ttyp names, ttypO-ttypF (where F is a hex number). Later this was

extended to ttyq0-ttyqF and so on, eventually wrapping around to ttyaO-ttyaF.
Linux also allows larger numbers such as ttypNNN.[2]

4 makeNextPtyNames

ok
void
makeNextPtyNames (char *cont,char * serv)
{

#ifdef AIX370platform

static int channelNo = 0;

sprintf(cont, "/dev/ptyp%02x", channelNo);
sprintf (serv, "/dev/ttyp%02x", channellNo);
channelNo++;

#endif

See the note above about the MACOS platform change.

%

#if defined(SUNplatform) ||\

defined (HP9platform) ||\

defined (LINUXplatform) ||\

defined (MACOSXplatform) ||\
defined(BSDplatform)

static int channelNo = 0;

static char group[] = "pqrstuvwxyzPQRST";
static int groupNo = O;

sprintf (cont, "/dev/ptylickhx", groupl[groupNo], channelNo);
sprintf (serv, "/dev/ttylickx", grouplgroupNo], channelNo);
channelNo++; /* try next */

if (channelNo == 16) { /* move to new group */
channelNo = 0;

groupNo++;

if (groupNo == 16) groupNo = 0; /* recycle x/

}

#endif

}

5 License

/*

Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
A1l rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

- Neither the name of The Numerical ALgorithms Group Ltd. nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

References

[1] ptmx(4) - Linux man page
http://linux/die.net/man/4/ptmx

[2] Text Termininal HOWTO
http://www.linux.org/docs/ldp/howto/
Text-Terminal-HOWTO-7.html

