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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I'm looking forward to future milestones.

With that in mind I've introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
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Our basic premise is that the ability to construct and modify programs
will not improve without a new and comprehensive look at the entire
programming process. Past theoretical research, say, in the logic of
programs, has tended to focus on methods for reasoning about indi-
vidual programs; little has been done, it seems to us, to develop a
sound understanding of the process of programming — the process by
which programs evolve in concept and in practice. At present, we lack
the means to describe the techniques of program construction and im-
provement in ways that properly link verification, documentation and
adaptability.

— Scherlis and Scott (1983) in [Mason 86]
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Chapter 1

Here is a problem

The goal is to prove that Axiom’s implementation of the Euclidean GCD algorithm is correct.

From category EuclideanDomain (EUCDOM) we find the implementation of the Euclidean
GCD algorithm:

ged(x,y) == --Euclidean Algorithm
x:=unitCanonical x
y:=unitCanonical y
while not zero? y repeat
(x,y):= (y,x rem y)

y:=unitCanonical y -- this doesn’t affect the
-- correctness of Euclid’s algorithm,
-- but

-- a) may improve performance
-- b) ensures gcd(x,y)=gcd(y,x)
-- if canonicalUnitNormal

The unitCanonical function comes from the category IntegralDomain (INTDOM) where we
find:

unitNormal: % -> Record(unit:%,canonical:%,associate:%)
++ unitNormal (x) tries to choose a canonical element
++ from the associate class of x.
++ The attribute canonicalUnitNormal, if asserted, means that
++ the "canonical" element is the same across all associates of x
++ if \spad{unitNormal(x) = [u,c,al} then
++ \spad{u*c = x}, \spad{axu = 1}.
unitCanonical: % -> ¥%
++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonicall}.

implemented as
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UCA ==> Record(unit:%,canonical:%,associate:%)
if not (% has Field) then
unitNormal (x) == [1$%,x,1$%]1$UCA -- the non-canonical definition
unitCanonical(x) == unitNormal(x).canonical -- always true
recip(x) == if zero? x then "failed" else _exquo(1$%,x)
unit?(x) == (recip x case "failed" => false; true)
if % has canonicalUnitNormal then
associates?(x,y) ==
(unitNormal x).canonical = (unitNormal y).canonical
else
associates?(x,y) ==
zero? x => zero? y
zero? y => false
X exquo y case "failed" => false
y exquo x case "failed" => false
true

1.1 Approaches

There are several systems that could be applied to approach the proof.

The plan is to initially look at Coq and ACL2. Coq seems to be applicable at the Spad level.
ACL2 seems to be applicable at the Lisp level. Both levels are necessary for a proper proof.

Coq is very close to Spad in spirit so we can use it for the high-level proofs.
ACL2 is a Lisp-level proof technology which can be used to prove the Spad-to-Lisp level.

There is an LLVM to ACL2 translator which can be used to move from the GCL Lisp level
to the hardware since GCL compiles to C.

Quoting from Hardin [Hardin 14]

LLVM is a register-based intermediate in Static Single Assignment (SSA) form.
As such, LLVM supports any number of registers, each of which is only assigned
once, statically (dynamically, of course, a given register can be assigned any
number of times). Appel has observed that “SSA form is a kind of functional
programming”; this observation, in turn, inspired us to build a translator from
LLVM to the applicative subset of Common Lisp accepted by the ACL2 theo-
rem prover. Our translator produces an executable ACL2 specification that is
able to efficiently support validation via testing, as the generated ACL2 code
features tail recursion, as well as in-place updates via ACL2’s single-threaded
object (stobj) mechanism. In order to ease the process of proving properties
about these translated functions, we have also developed a technique for reason-
ing about tail-recursive ACL2 functions that execute in-place, utilizing a formally
proven “bridge” to primitive-recursive versions of those functions operating on
lists.
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Figure 1: LLVM-to-ACL2 translation toolchain.

Hardin [Hardin 13] describes the toolchain thus:

Our translation toolchain architecture is shown in Figure 1. The left side of tthe
figure depicts a typical compiler frontend producing LLVM intermediate code.
LLVM output can be produced either as a binary “bitcode” (.be) file, or as text
(.11 file). We chose to parse the text form, producing an abstract syntax tree
(AST) representation of the LLVM program. Our translator then converts the
AST to ACL2 source. The ACL2 source file can then be admitted into an ACL2
session, along with conjectures that one wishes to prove about the code, which
ACL2 processes mostly automatically. In addition to proving theorems about
the translated LLVM code, ACL2 can also be used to execute test vectors at
reasonable speed.

Note that you can see the intermediate form from clang with
clang -04 -S -emit-1lvm foo.c

Both Coq and the Hardin translator use OCAML [OCAML 14] so we will have to learn that
language.
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Chapter 2

Theory

The proof of the Euclidean algorithm has been known since Euclid. We need to study an
existing proof and use it to guide our use of Coq along the same lines, if possible. Some of
the “obvious” natural language statements may require Coq lemmas.

From WikiProof [Wiki 14a] we quote:

Let
a,bel

and a # Oorb # 0.
The steps of the algorithm are:

1. Start with (a,b) such that |a| > |b]. If b = 0 then the task is complete and the GCD is
a.

2. if b # 0 then you take the remainder r of a/b.
3. set a < b, b < r (and thus |a| > |b| again).

4. repeat these steps until b =0

Thus the GCD of a and b is the value of the variable a at the end of the algorithm.
The proof is:

Suppose
a,beZ

and aorb # 0.
From the division theorem, a = qb + r where 0 < r < ||
From GCD with Remainder, the GCD of a and b is also the GCD of b and r.

Therefore we may search instead for the ged(b, ).
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Since |r| > |b| and
beZ
, we will reach r = 0 after finitely many steps.
At this point, ged(r,0) = r from GCD with Zero.
We quote the Division Theorem proof [Wiki 14b]:

For every pair of integers a, b where b # 0, there exist unique integers ¢, r such that a = ¢gb+r
and 0 < r < |b|.
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Software Details

3.1 Installed Software

Install CLANG, LLVM
http://1lvm.org/releases/download.html
Install OCAML

sudo apt-get install ocaml

An OCAML version of ged would be written

let rec gcd a b = if b = 0 then a else gcd b (a mod b)
val gcd : int -> int -> int = <fun>
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