.

=13

Thé 30 Year Horizon

Manuel Bronstein William Burge Timothy Daly
James Davenport Michael Dewar Martin Dunstan
Albrecht Fortenbacher Patrizia Gianni Johannes Grabmeier
Jocelyn Guidry Richard Jenks Larry Lambe
Michael Monagan Scott Morrison William Sit
Jonathan Steinbach Robert Sutor Barry Trager
Stephen Watt Jim Wen Clifton Williamson

Volume 13: Proving Axiom Correct

Portions Copyright (c) 2005 Timothy Daly
The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan
Portions Copyright (c) 2007 Alfredo Portes
Portions Copyright (c) 2007 Arthur Ralfs
Portions Copyright (c) 2005 Timothy Daly

Portions Copyright (c) 1991-2002,
The Numerical ALgorithms Group Ltd.
All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are

met:

- Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

- Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

- Neither the name of The Numerical ALgorithms Group Ltd.
nor the names of its contributors may be used to endorse
or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

ii

Inclusion of names in the list of credits is based on historical information and is as accurate
as possible. Inclusion of names does not in any way imply an endorsement but represents

historical influence on Axiom development.

Michael Albaugh
Christian Aistleitner
S.J. Atkins

Stephen Balzac
Gerald Baumgartner
Nelson H. F. Beebe
Fred Blair

Raoul Bourquin
Peter A. Broadbery
Stephen Buchwald
William Burge
Robert Caviness
Tzu-Yi Chen
Gregory V. Chudnovsky
Jia Zhao Cong

Don Coppersmith
Gary Cornell

David Cyganski
Timothy Daly Jr.
James Demmel

Jack Dongarra
Claire DiCrescendo
Tain Duff

Brian Dupee

Heow Eide-Goodman
Bertfried Fauser
Brian Ford
Constantine Frangos
Marc Gaetano
Kathy Gerber
Holger Gollan
Stephen Gortler
Klaus Ebbe Grue
Oswald Gschnitzer
Gaetan Hache

Sven Hammarling
Richard Harke
Martin Hassner
Waldek Hebisch

Cyril Alberga
Richard Anderson
Henry Baker

Yurij Baransky
Gilbert Baumslag
Jay Belanger
Vladimir Bondarenko
Alexandre Bouyer
Martin Brock
Florian Bundschuh
Ralph Byers

Bruce Char

Cheekai Chin

Mark Clements
Josh Cohen

George Corliss
Meino Cramer
Nathaniel Daly
James H. Davenport
Didier Deshommes
Jean Della Dora
Sam Dooley

Lee Duhem
Dominique Duval
Lars Erickson
Stuart Feldman
Albrecht Fortenbacher
Timothy Freeman
Rudiger Gebauer
Patricia Gianni
Teresa Gomez-Diaz
Johannes Grabmeier
James Griesmer
Ming Gu

Steve Hague

Mike Hansen

Bill Hart

Arthur S. Hathaway
Karl Hegbloom

Roy Adler

George Andrews
Martin Baker
David R. Barton
Michael Becker
David Bindel
Mark Botch

Karen Braman
Manuel Bronstein
Luanne Burns
Quentin Carpent
Ondrej Certik
David V. Chudnovsky
James Cloos
Christophe Conil
Robert Corless
Jeremy Du Croz
Timothy Daly Sr.
David Day
Michael Dewar
Gabriel Dos Reis
Lionel Ducos
Martin Dunstan
Robert Edwards
Richard Fateman
John Fletcher
George Frances
Korrinn Fu

Van de Geijn
Samantha Goldrich
Laureano Gonzalez-Vega
Matt Grayson
Vladimir Grinberg
Jocelyn Guidry
Satoshi Hamaguchi
Richard Hanson
Vilya Harvey

Dan Hatton

Ralf Hemmecke

Henderson

Gernot Hueber
Richard Jenks
Grant Keady

Ted Kosan
Bernhard Kutzler
Kaj Laurson
Frederic Lehobey
Ren-Cang Li
Richard Luczak
Alasdair McAndrew
Edi Meier

Victor S. Miller

H. Michael Moeller
Scott Morrison
William Naylor
John Nelder
Jinzhong Niu
Kostas Oikonomou
Bill Page

Michel Petitot
Frederick H. Pitts
Claude Quitte
Anatoly Raportirenko
Guilherme Reis
Jean Rivlin
Raymond Rogers
Philip Santas
Gerhard Schneider
Frithjof Schulze

V. Sima

Elena Smirnova
Christine Sundaresan
Eugene Surowitz
James Thatcher
Dylan Thurston
Themos T. Tsikas
Stephen Watt

M. Weller
Thorsten Werther
John M. Wiley
Stephen Wilson
Sandra Wityak
Liu Xiaojun
Vadim Zhytnikov
Bruno Zuercher

Antoine Hersen
Pietro Iglio
William Kahan
Wilfrid Kendall
Paul Kosinski

Tim Lahey

George L. Legendre
Michel Levaud
Rudiger Loos
Camm Maguire
Bob McElrath

Tan Meikle

Gerard Milmeister
Michael Monagan
Joel Moses

Patrice Naudin
Godfrey Nolan
Michael O’Connor
Humberto Ortiz-Zuazaga
David Parnas
Didier Pinchon
Jose Alfredo Portes
Arthur C. Ralfs
Albert D. Rich
Huan Ren

Nicolas Robidoux
Michael Rothstein
Alfred Scheerhorn
Martin Schoenert
Fritz Schwarz

Nick Simicich
Jonathan Steinbach
Robert Sutor

Max Tegmark
Balbir Thomas
Steve Toleque
Gregory Vanuxem
Jaap Weel

Mark Wegman
Michael Wester
Berhard Will
Shmuel Winograd
Waldemar Wiwianka,
Clifford Yapp
Richard Zippel
Dan Zwillinger

iii

Roger House
Alejandro Jakubi
Kai Kaminski

Tony Kennedy
Klaus Kusche
Larry Lambe

Franz Lehner
Howard Levy
Michael Lucks
Francois Maltey
Michael McGettrick
David Mentre
Mohammed Mobarak
Marc Moreno-Maza
Mark Murray

C. Andrew Neff
Arthur Norman
Summat Oemrawsingh
Julian A. Padget
Susan Pelzel

Ayal Pinkus
Gregorio Quintana-Orti
Norman Ramsey
Michael Richardson
Renaud Rioboo
Simon Robinson
Martin Rubey
William Schelter
Marshall Schor
Steven Segletes
William Sit

Fabio Stumbo

Moss E. Sweedler
T. Doug Telford
Mike Thomas
Barry Trager
Bernhard Wall
Juergen Weiss
James Wen

R. Clint Whaley
Clifton J. Williamson
Robert Wisbauer
Knut Wolf

David Yun

Evelyn Zoernack

iv

Contents

1 Here is a problem 3
1.1 Approaches 4
2 Theory 7
3 Software Details 9
3.1 Imstalled Software. 9
3.2 CoqgSpad proofs 11
3.3 ACL2 Lisp proofs e 11
3.4 LisptoHardware 11

vi CONTENTS

New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I'm looking forward to future milestones.

With that in mind I've introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))

CONTENTS

Our basic premise is that the ability to construct and modify programs
will not improve without a new and comprehensive look at the entire
programming process. Past theoretical research, say, in the logic of
programs, has tended to focus on methods for reasoning about indi-
vidual programs; little has been done, it seems to us, to develop a
sound understanding of the process of programming — the process by
which programs evolve in concept and in practice. At present, we lack
the means to describe the techniques of program construction and im-
provement in ways that properly link verification, documentation and
adaptability.

— Scherlis and Scott (1983) in [Mason 86]

CONTENTS

Chapter 1

Here is a problem

The goal is to prove that Axiom’s implementation of the Euclidean GCD algorithm is correct.

From category EuclideanDomain (EUCDOM) we find the implementation of the Euclidean
GCD algorithm:

ged(x,y) == --Euclidean Algorithm
x:=unitCanonical x
y:=unitCanonical y
while not zero? y repeat
(x,y):= (y,x rem y)

y:=unitCanonical y -- this doesn’t affect the
-- correctness of Euclid’s algorithm,
-- but

-- a) may improve performance
-- b) ensures gcd(x,y)=gcd(y,x)
-- if canonicalUnitNormal

The unitCanonical function comes from the category IntegralDomain (INTDOM) where we
find:

unitNormal: % -> Record(unit:%,canonical:%,associate:%)
++ unitNormal (x) tries to choose a canonical element
++ from the associate class of x.
++ The attribute canonicalUnitNormal, if asserted, means that
++ the "canonical" element is the same across all associates of x
++ if \spad{unitNormal(x) = [u,c,al} then
++ \spad{u*c = x}, \spad{axu = 1}.
unitCanonical: % -> ¥%
++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonicall}.

implemented as

4 CHAPTER 1. HERE IS A PROBLEM

UCA ==> Record(unit:%,canonical:%,associate:%)
if not (% has Field) then
unitNormal (x) == [1$%,x,1$%]1$UCA -- the non-canonical definition
unitCanonical(x) == unitNormal(x).canonical -- always true
recip(x) == if zero? x then "failed" else _exquo(1$%,x)
unit?(x) == (recip x case "failed" => false; true)
if % has canonicalUnitNormal then
associates?(x,y) ==
(unitNormal x).canonical = (unitNormal y).canonical
else
associates?(x,y) ==
zero? x => zero? y
zero? y => false
X exquo y case "failed" => false
y exquo x case "failed" => false
true

1.1 Approaches

There are several systems that could be applied to approach the proof.

The plan is to initially look at Coq and ACL2. Coq seems to be applicable at the Spad level.
ACL2 seems to be applicable at the Lisp level. Both levels are necessary for a proper proof.

Coq is very close to Spad in spirit so we can use it for the high-level proofs.
ACL2 is a Lisp-level proof technology which can be used to prove the Spad-to-Lisp level.

There is an LLVM to ACL2 translator which can be used to move from the GCL Lisp level
to the hardware since GCL compiles to C.

Quoting from Hardin [Hardin 14]

LLVM is a register-based intermediate in Static Single Assignment (SSA) form.
As such, LLVM supports any number of registers, each of which is only assigned
once, statically (dynamically, of course, a given register can be assigned any
number of times). Appel has observed that “SSA form is a kind of functional
programming”; this observation, in turn, inspired us to build a translator from
LLVM to the applicative subset of Common Lisp accepted by the ACL2 theo-
rem prover. Our translator produces an executable ACL2 specification that is
able to efficiently support validation via testing, as the generated ACL2 code
features tail recursion, as well as in-place updates via ACL2’s single-threaded
object (stobj) mechanism. In order to ease the process of proving properties
about these translated functions, we have also developed a technique for reason-
ing about tail-recursive ACL2 functions that execute in-place, utilizing a formally
proven “bridge” to primitive-recursive versions of those functions operating on
lists.

1.1. APPROACHES)

Figure 1: LLVM-to-ACL2 translation toolchain.

Hardin [Hardin 13] describes the toolchain thus:

Our translation toolchain architecture is shown in Figure 1. The left side of tthe
figure depicts a typical compiler frontend producing LLVM intermediate code.
LLVM output can be produced either as a binary “bitcode” (.be) file, or as text
(.11 file). We chose to parse the text form, producing an abstract syntax tree
(AST) representation of the LLVM program. Our translator then converts the
AST to ACL2 source. The ACL2 source file can then be admitted into an ACL2
session, along with conjectures that one wishes to prove about the code, which
ACL2 processes mostly automatically. In addition to proving theorems about
the translated LLVM code, ACL2 can also be used to execute test vectors at
reasonable speed.

Note that you can see the intermediate form from clang with
clang -04 -S -emit-1lvm foo.c

Both Coq and the Hardin translator use OCAML [OCAML 14] so we will have to learn that
language.

CHAPTER 1. HERE IS A PROBLEM

Chapter 2

Theory

The proof of the Euclidean algorithm has been known since Euclid. We need to study an
existing proof and use it to guide our use of Coq along the same lines, if possible. Some of
the “obvious” natural language statements may require Coq lemmas.

From WikiProof [Wiki 14a] we quote:

Let
a,bel

and a # Oorb # 0.
The steps of the algorithm are:

1. Start with (a,b) such that |a| > |b]. If b = 0 then the task is complete and the GCD is
a.

2. if b # 0 then you take the remainder r of a/b.
3. set a < b, b < r (and thus |a| > |b| again).

4. repeat these steps until b =0

Thus the GCD of a and b is the value of the variable a at the end of the algorithm.
The proof is:

Suppose
a,beZ

and aorb # 0.
From the division theorem, a = qb + r where 0 < r < ||
From GCD with Remainder, the GCD of a and b is also the GCD of b and r.

Therefore we may search instead for the ged(b,).

8 CHAPTER 2. THEORY

Since |r| > |b| and
beZ
, we will reach r = 0 after finitely many steps.
At this point, ged(r,0) = r from GCD with Zero.
We quote the Division Theorem proof [Wiki 14b]:

For every pair of integers a, b where b # 0, there exist unique integers ¢, r such that a = ¢gb+r
and 0 < r < |b|.

Chapter 3

Software Details

3.1 Installed Software

Install CLANG, LLVM
http://1lvm.org/releases/download.html
Install OCAML

sudo apt-get install ocaml

An OCAML version of ged would be written

let rec gcd a b = if b = 0 then a else gcd b (a mod b)
val gcd : int -> int -> int = <fun>

10

CHAPTER 3. SOFTWARE DETAILS

Bibliography

3.2 Coq Spad proofs

[Bertot 04] Bertot, Yves; Castéran, Pierre
“Interactive Theorem Proving and Program Development”
Springer ISBN 3-540-20854-2

[OCAML 14] .
The OCAML website

ocaml.org

3.3 ACL2 Lisp proofs

[Kaufmann 14] Kaufmann, Matt; Moore, J Strother
“ACL2 Version 6.4”

www.cs.utexas.edu/users/moore/acl2

3.4 Lisp to Hardware

[Daly 10] Daly, Timothy
“Intel Instruction Semantics Generator”

daly.axiom-developer.org/TimothyDaly_files/publications/sei/intel/intel.pdf

[Hardin 13] Hardin, David S.; McClurg, Jedidiah R.; Davis, Jennifer A.
“Creating Formally Verified Components for Layered Assurance with an LLVM to ACL2

Translator”
www. jrmcclurg. com/papers/law_2013_paper.pdf

[Hardin 14] Hardin, David S.; Davis, Jennifer A.; Greve, David A.; McClurg, Jedidiah R.

“Development of a Translator from LLVM to ACL2”
arxiv.org/pdf/1406.1566

11

12 BIBLIOGRAPHY

[Mason 86] Mason, Ian A.
“The Semantics of Destructive Lisp”
Center for the Study of Language and Information ISBN 0-937073-06-7

[Wiki 14a] ProofWiki
“Euclidean Algorithm”
proofwiki.org/wiki/Euclidean_Algorithm

[Wiki 14b] ProofWiki
“Division Theorem”
proofwiki.org/wiki/Division_Theorem

	Here is a problem
	Approaches

	Theory
	Software Details
	Installed Software
	Coq Spad proofs
	ACL2 Lisp proofs
	Lisp to Hardware

