$SPAD /src/input pdecomp0.as

The Axiom Team

July 29, 2014

Abstract

Contents

1 License

1 License

-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
-- All rights reserved.

-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:

- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.

- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the

- distribution.

-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
- names of its contributors may be used to endorse or promote products
- derived from this software without specific prior written permission.

-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

—-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#pile
#include "axiom.as"

--% Polynomial composition and decomposition functions
-- If £f =g oh then g = leftFactor(f, h) & h = rightFactor(f, g)
-- SMW Dec 86

--% PolynomialComposition
--)abbrev package PCOMP PolynomialComposition
--)abbrev package PDECOMP PolynomialDecomposition

PolynomialComposition(UP: UnivariatePolynomialCategory(R), R: Ring): with
compose: (UP, UP) -> UP

== add
compose(g:UP, h:UP):UP ==

r: UP :=0

while g "= O repeat
r := leadingCoefficient(g)*h**degree(g) + r
g := reductum g

r

-- Ref: Kozen and Landau, Cornell University TR 86-773

--% PolynomialDecomposition

PolynomialDecomposition(UP:UPC F, F:Field): PDcat == PDdef where
UPC ==> UnivariatePolynomialCategory
NNI ==> NonNegativelnteger
LR ==> Record(left: UP, right: UP)

PDcat ==> with
decompose: UP -> List UP
decompose: (UP, NNI, NNI) -> Union(valuel:LR, failed:’failed’)
leftFactor: (UP, UP) -> Union(valuel:UP, failed:’failed’)
rightFactorCandidate: (UP, NNI) -> UP

PDdef ==> add

import from F

import from LR

import from Union(valuel:UP, failed:’failed’)
import from Float

import from NNI

import from UniversalSegment NNI

import from Record(quotient:UP, remainder:UP);

leftFactor (f:UP, h:UP):Union(valuel:UP, failed:’failed’) ==
g: UP :=0
for i in O0.. while £ "= 0 repeat
fr := divide(f, h)
f := fr.quotient

r := fr.remainder
degree r > 0 => return [failed]
g := g + r * monomial(l, i)

[g]

decompose(f:UP, dg:NNI, dh:NNI):Union(valuel:LR, failed:’failed’) ==
df := degree f
dgxdh ~= df => [failed]
h := rightFactorCandidate(f, dh)
g:Union(valuel:UP, failed:’failed’) := leftFactor(f, h)

g case failed => [failed]
[[g.valuel, h]]

decompose(f:UP) :List UP ==
:= degree f

df

for dh in 2..df-1 | df rem dh = O repeat
rightFactorCandidate(f, dh)

[£]

rightFactorCandidate(f:UP, dh:NNI):UP ==
f / leadingCoefficient f
degree f

df quo dh

£
df

dg :

h
for

h :=

g := leftFactor(f, h)
g case valuel => return
append (decompose(g.valuel), decompose h)

monomial (1, dh)

k in 1..dh repeat

hdg:= h**xdg
¢ := (coefficient(f,df-k)-coefficient(hdg,df-k))/
(dg: :Integer: :F)
h :=h + monomial(c, dh-k)
monomial (coefficient(h, 0), 0) -- drop constant term

References

[1] nothing

