
$SPAD/src/lib bsdsignal.c

The Axiom Team

July 28, 2014

Abstract

1

Contents

1 Executive Overview 3

2 Signals 3

3 MAC OSX and BSD platform change 6

4 License 8

2

1 Executive Overview

2 Signals

The system defines a set of signals that may be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is normally
blocked from further occurrence, the current process context is saved, and a new
one is built. A process may specify a handler to which a signal is delivered, or
specify that a signal is to be ignored. A process may also specify that a default
action is to be taken by the system when a signal occurs. A signal may also be
blocked, in which case its delivery is postponed until it is unblocked. The action
to be taken on delivery is determined at the time of delivery. Normally, signal
handlers execute on the current stack of the process. This may be changed, on
a per-handler basis, so that signals are taken on a special signal stack.

Signal routines normally execute with the signal that caused their invocation
blocked, but other signals may yet occur. A global signal mask defines the set
of signals currently blocked from delivery to a process. The signal mask for a
process is initialized from that of its parent (normally empty). It may be changed
with a sigprocmask(2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of
signals pending for the process. If the signal is not currently blocked by the
process then it is delivered to the process. Signals may be delivered any time
a process enters the operating system (e.g., during a system call, page fault or
trap, or clock interrupt). If muliple signals are ready to be delivered at the same
time, any signals that could be caused by traps are delivered first. Additional
signals may be processed at the same time, with each appearing to interrupt
the handlers for the previous signals before their first instructions. The set of
pending signals is retuned by the sigpending(2) system call. When a caught
signal is delivered, the current state of the process is saved, a new signal mask is
calculated (as described below), and the signal handler is invoked. The call to
the handler is arranged so that if the signal handling routine returns normally
the process will resume execution in the context from before the signal’s delivery.
If the process wishes to resume in a different context, then it must arrange to
restore the previous context itself.

When a signal is delivered to a proces a new signal mask is installed for the
duration of the process’s signal handler (or until a sigprocmask(2) system call
is made). This mask is formed by taking the union of the current signal mask
set, the signal to be delivered, and the signal mask associated with the handler
to be invoked.

The sigaction() system call assigns an action for a signal specified by sig. If
act is non-zero, it specifies an action (SIG DFL, SIG IGN, or a handler routine)
and mask to be used when delivering the specified signal. If oact is non-zero,
the previous handling information for the signal is returned to the user.

Once a signal handler is installed, it normally remains installed until another
sigaction() system call is made, or an execve(2) is performed. A signal-specific

3

default action may be reset by setting sa handler to SIG DFL. The defaults are
process termination, possibly with core dump; no action; stopping the process;
or continuing the process. See the signal list below for each signal’s default
action. If sa handler is SIG DFL, the default action for the signal is to discard
the signal, and if a signal is pending, the pending signal is discarded even if the
signal is masked. If sa handler is set to SIG IGN current and pending instances
of the signal are ignored and discarded.

Options may be specified by setting sa flags. The meaning of the various
bits is as follows:

• SA NOCLDSTOP If this bit is set when installing a catching function
for the SIGCHLD signal, the SIGCHLD signal will be generated only when
a child process exits, not when a child process stops.

• SA NOCLDWAIT If this bit is set when calling sigaction() for the
SIGCHLD signal, the system will not create zombie processes when chil-
dren of the calling process exit. If the calling process subsequently issues a
wait() (or equivalent), it blocks until all of the calling process’s child pro-
cesses terminate, and then returns a value of -1 with errno set to ECHILD.

• SA ONSTACK If this bit is set, the system will deliver the signal to the
process on a signal stack, specified with sigaltstack(2).

• SA NODEFER If this bit is set, further occurrences of the delivered
signal are not masked during the execution of the handler.

• SA RESETHAND If this bit is set, the handler is reset to SIG DFL at
the moment the signal is delivered.

• SA RESTART See the paragraph below

• SA SIGINFO If this bit is set, the handler function is assumed to be
pointed to by the sa sigaction member of struct sigaction and should
match the prototype shown above or as below in EXAMPLES. This bit
should not be set when assigning SIG DFL or SIG IGN

If a signal is caught during the system calls listed below, the call may be forced
to terminate with the error EINTR, the call may return with a data transfer
shorter than requested, or the call may be restarted. Restart of pending calls is
requested by setting the SA RESTART bit in sa flags. The affected system calls
include open(2), read(2), write(2), sendto(2), recvfrom(2), sendmsg(2)
and recvmsg(2) on a communications channel or a slow device (such as a
terminal, but not a regular file) and during a wait(2) or ioctl(2). However,
calls that have already committed are not restarted, but instead return a partial
success (for example, a short read count).

After a fork(2) or vfork(2) all signals, the signal mask, the signal stack,
and the restart/interrupt flags are inherited by the child.

The execve(2) system call reinstates the default action for all signals which
were caught and resets all signals to be caught on the user stack. Ignored signals

4

remain ignored; the signal mask remains the same; signals that restart pending
system calls continue to do so.

The following is a list of all signals with names in the include file <signal.h>:
NAME Default Action Description
SIGHUP terminate process terminal line hangup
SIGINT terminate process interrupt program
SIGQUIT create core image quit program
SIGILL create core image illegal instruction
SIGTRAP create core image trace trap
SIGABRT create core image abort(3) call (formerly SIGIOT)
SIGEMT create core image emulate instruction executed
SIGFPE create core image floating-point exception
SIGKILL terminate process kill program
SIGBUS create core image bus error
SIGSEGV create core image segmentation violation
SIGSYS create core image non-existent system call invoked
SIGPIPE terminate process write on a pipe with no reader
SIGALRM terminate process real-time timer expired
SIGTERM terminate process software termination signal
SIGURG discard signal urgent condition present on socket
SIGSTOP stop process stop (cannot be caught or ignored)
SIGSTP stop process keyboard generated stop signal
SIGCONT discard signal continue after stop
SIGCHLD discard signal child status has changed
SIGTTIN stop process background read attempted from

control terminal
SIGTTOU stop process background write attempted from

control terminal
SIGIO discard signal I/O possible on descriptor fcntl(2)
SIGXCPU terminate process cpu limit exceeded setrlimit(2)
SIGXFSZ terminate process filesize exceeded setrlimit(2)
SIGVTALRM terminate process virtual time alarm setitimer(2)
SIGPROF terminate process profiling timer alarm setitimer(2)
SIGWINCH discard signal Window size change
SIGINFO discard signal status request from keyboard
SIGUSR1 terminate process User defined signal 1
SIGUSR2 terminate process User defined signal 2

The sigaction() function returns the value 0 if successful; otherwise the value
-1 is returned and the global variable errno is set to indicate the error.

Signal handlers should have either the ANSI C prototype:

void handler(int);

or the POSIX SA SIGINFO prototype:

void handler(int, siginfo_t *info, ucontext_t *uap);

5

The handler function should match the SA SIGINFO prototype when the
SA SIGINFO bit is set in flags. It then should be pointed to by the sa sigaction
member of struct sigaction. Note that you should not assign SIG DFL or
SIG IGN this way.

If the SA SIGINFO flag is not set, the handler function should match either
the ANSI C or traditional BSD prototype and be pointed to by the sa handler
member of struct sigaction. In practice, FreeBSD always sends the three argu-
ments of the latter and since the ANSI C prototype is a subset, both will work.
The sa handler member declaration in FreeBSD include files is that of ANSI C
(as required by POSIX), so a function pointer of a BSD-style function needs to
be casted to compile without warning. The traditional BSD style is not portable
and since its capabilities are a full subset of a SA SIGNFO handler its use is
deprecated.

The sig argument is the signal number, one of the SIG. . . values from ¡sig-
nal.h¿.

The code argument of the BSD-style handler and the si code member of the
info argument to a SA SIGINFO handler contain a numeric code explaining the
cause of the signal, usually on of the SI . . . values from ¡sys/signal.h¿ or codes
specific to a signal, i.e. one of the FPE . . . values for SIGFPE.

The uap argument to a POSIX SA SIGINFO handler points to an instance
of ucontext t.

The sigaction() system call will fail and no new signal handler will be
installed if one of the following occurs:

• [EFAULT] Either act or oact points to memory that is not a valid part
of the process address space

• [EINVAL] The sig argument is not a valid signal number

• [EINVAL] An attempt is made to ignore or supply a handler for SIGKILL
or SIGSTOP

3 MAC OSX and BSD platform change

— * —

#include "bsdsignal.h"

———-
The MACOSX platform is broken because no matter what you do it seems to

include files from [[/usr/include/sys]] ahead of [[/usr/include]]. On linux systems
these files include themselves which causes an infinite regression of includes that
fails. GCC gracefully steps over that problem but the build fails anyway. On
MACOSX the [[/usr/include/sys]] versions of files are badly broken with respect
to the [[/usr/include]] versions.

6

— * —

#if defined(MACOSXplatform)

#include "/usr/include/signal.h"

#else

#include <signal.h>

#endif

#include "bsdsignal.h1"

SignalHandlerFunc

bsdSignal(int sig,SignalHandlerFunc action,int restartSystemCall)

{

#ifndef MSYSplatform

struct sigaction in,out;

in.sa_handler = action;

/* handler is reinstalled - calls are restarted if restartSystemCall */

———-
We needed to change [[SIGCLD]] to [[SIGCHLD]] for the [[MAC OSX]] plat-

form and we need to create a new platform variable. This change is made to
propogate that platform variable.

— * —

#if defined(LINUXplatform)

if(restartSystemCall) in.sa_flags = SA_RESTART;

else in.sa_flags = 0;

#elif defined (ALPHAplatform)

if(restartSystemCall) in.sa_flags = SA_RESTART;

else in.sa_flags = 0;

#elif defined(RIOSplatform)

if(restartSystemCall) in.sa_flags = SA_RESTART;

else in.sa_flags = 0;

#elif defined(SUN4OS5platform)

if(restartSystemCall) in.sa_flags = SA_RESTART;

else in.sa_flags = 0;

#elif defined(SGIplatform)

if(restartSystemCall) in.sa_flags = SA_RESTART;

else in.sa_flags = 0;

#elif defined(HP10platform)

if(restartSystemCall) in.sa_flags = SA_RESTART;

else in.sa_flags = 0;

#elif defined(MACOSXplatform)

if(restartSystemCall) in.sa_flags = SA_RESTART;

else in.sa_flags = 0;

#elif defined(BSDplatform)

7

if(restartSystemCall) in.sa_flags = SA_RESTART;

else in.sa_flags = 0;

#elif defined(SUNplatform)

if (restartSystemCall) in.sa_flags = 0;

else in.sa_flags = SA_INTERRUPT;

#elif defined(HP9platform)

in.sa_flags = 0;

#else

in.sa_flags = 0;

#endif

return (sigaction(sig, &in, &out) ? (SignalHandlerFunc) -1 :

(SignalHandlerFunc) out.sa_handler);

#else /* MSYSplatform */

return (SignalHandlerFunc) -1;

#endif /* MSYSplatform */

}

———-

4 License

/*

Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

- Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the

distribution.

- Neither the name of The Numerical ALgorithms Group Ltd. nor the

names of its contributors may be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS

IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER

OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

8

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

9

References

[1] nothing

10

