
$SPAD/src/input pdecomp0.as

The Axiom Team

July 28, 2014

Abstract

1

Contents

1 License 3

2

1 License

-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.

-- All rights reserved.

--

-- Redistribution and use in source and binary forms, with or without

-- modification, are permitted provided that the following conditions are

-- met:

--

-- - Redistributions of source code must retain the above copyright

-- notice, this list of conditions and the following disclaimer.

--

-- - Redistributions in binary form must reproduce the above copyright

-- notice, this list of conditions and the following disclaimer in

-- the documentation and/or other materials provided with the

-- distribution.

--

-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the

-- names of its contributors may be used to endorse or promote products

-- derived from this software without specific prior written permission.

--

-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS

-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER

-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

— * —

#pile

#include "axiom.as"

--% Polynomial composition and decomposition functions

-- If f = g o h then g = leftFactor(f, h) & h = rightFactor(f, g)

-- SMW Dec 86

--% PolynomialComposition

--)abbrev package PCOMP PolynomialComposition

--)abbrev package PDECOMP PolynomialDecomposition

PolynomialComposition(UP: UnivariatePolynomialCategory(R), R: Ring): with

compose: (UP, UP) -> UP

3

== add

compose(g:UP, h:UP):UP ==

r: UP := 0

while g ~= 0 repeat

r := leadingCoefficient(g)*h**degree(g) + r

g := reductum g

r

-- Ref: Kozen and Landau, Cornell University TR 86-773

--% PolynomialDecomposition

PolynomialDecomposition(UP:UPC F, F:Field): PDcat == PDdef where

UPC ==> UnivariatePolynomialCategory

NNI ==> NonNegativeInteger

LR ==> Record(left: UP, right: UP)

PDcat ==> with

decompose: UP -> List UP

decompose: (UP, NNI, NNI) -> Union(value1:LR, failed:’failed’)

leftFactor: (UP, UP) -> Union(value1:UP, failed:’failed’)

rightFactorCandidate: (UP, NNI) -> UP

PDdef ==> add

import from F

import from LR

import from Union(value1:UP, failed:’failed’)

import from Float

import from NNI

import from UniversalSegment NNI

import from Record(quotient:UP, remainder:UP);

leftFactor(f:UP, h:UP):Union(value1:UP, failed:’failed’) ==

g: UP := 0

for i in 0.. while f ~= 0 repeat

fr := divide(f, h)

f := fr.quotient

r := fr.remainder

degree r > 0 => return [failed]

g := g + r * monomial(1, i)

[g]

decompose(f:UP, dg:NNI, dh:NNI):Union(value1:LR, failed:’failed’) ==

df := degree f

dg*dh ~= df => [failed]

h := rightFactorCandidate(f, dh)

g:Union(value1:UP, failed:’failed’) := leftFactor(f, h)

4

g case failed => [failed]

[[g.value1, h]]

decompose(f:UP):List UP ==

df := degree f

for dh in 2..df-1 | df rem dh = 0 repeat

h := rightFactorCandidate(f, dh)

g := leftFactor(f, h)

g case value1 => return

append(decompose(g.value1), decompose h)

[f]

rightFactorCandidate(f:UP, dh:NNI):UP ==

f := f / leadingCoefficient f

df := degree f

dg := df quo dh

h := monomial(1, dh)

for k in 1..dh repeat

hdg:= h**dg

c := (coefficient(f,df-k)-coefficient(hdg,df-k))/

(dg::Integer::F)

h := h + monomial(c, dh-k)

h - monomial(coefficient(h, 0), 0) -- drop constant term

———-

5

References

[1] nothing

6

