
Katana: An ELF/DWARF Manipulation Tool
with Hotpatching Capabilities

James Oakley

08 May 2011

Contents

1 Introduction 1

2 General Usage Information 2
2.1 Shell . 2

2.1.1 Syntax and Data Model 2
2.1.2 Available Commands 3
2.1.3 History . 6

3 Hotpatching 6
3.1 Other Systems . 6
3.2 What Katana Does . 7
3.3 What Katana Does Not Do (Yet) 7
3.4 What Katana May Never Do 7
3.5 How to Use Katana For Hotpatching 7

3.5.1 Preparing a Package for Patching Support 8
3.5.2 Source Code Practices 8
3.5.3 Compilation/Linking 8
3.5.4 To Generate a Patch 9
3.5.5 To Apply a Patch . 9
3.5.6 To View a Patch . 9
3.5.7 Options . 10
3.5.8 Configuration Files . 10
3.5.9 See Also . 10

3.6 Patch Object Format . 11
3.7 Patch Generation Process . 12
3.8 Configuration . 12

1

3.9 Initializing the patch object 12
3.10 Comparing source trees . 12
3.11 Type Diffing . 14
3.12 Function Diffing . 14
3.13 Patch Application Process . 14
3.14 Roadmap . 15

4 DWARF Manipulation 15

5 Credits and Licensing 15

1 Introduction

Katana is a research system for ELF/DWARF manipulation. It was orig-
inally developed for research into hotpatching. It was later revised for re-
search into security implication of gcc/C++ exception handling, which is
implemented primarily using DWARF call frame information. Therefore, if
you are interested in vulnerabilities related to exceptiong handling/DWARF
you may probably ignore the parts of this manual which discuss hotpatch-
ing. If you are instead interested in hotpatching, you may probably ignore
the parts of this manual that deal with manipulating exception handling
structures.

Katana aims to provide a hot-patching system for userland. Further it
aims to work with existing toolchains and formats so as to be easy to use
and to hopefully pave the way for incorporating patching as a standard part
of the toolchain. Because of this aim, Katana operates at the object level
rather than requiring any access to the source code itself. This has the added
bonus of making it, in theory, language agnostic (although no work has been
done to test it with anything besides programs written in C). A diagram of
software lifecycle with hotpatching is shown below (unless you are reading
this in plain text)

This document is intended to provide a users guide to Katana, insight
into its inner workings, and discussion of its flaws and plans for the future. As
the software is not complete, making use of Katana without understanding
the inner workings and technical shortcomings is not recommended. Nev-
ertheless, the only sections of this document necessary for “Users’ Guide”
purposes are “What Katana Does”, “What Katana Does Not Do (Yet)”, and
most importantly “How to Use Katana For Hotpatching”.

2

Compiler Assembler Linker

Core Dyn. Link Loader

rel
obj

exec obj

in-mem
exec obj

Development

Runtime

Runtime
with
Patching

Patcher

Patcher

in-mem
exec obj

in-mem
exec obj

et cetera

Patch
Generator

updated
objects
and programs

patch
obj
(PO)

patch
obj
(PO)

Patch Creation

This document is a work in progress. It is not a polished guide yet.

2 General Usage Information

2.1 Shell

If Katana is not passed an argument indicating one of the hot-patching
commands (described later in *How to Use Katana For Hotpatching), then
it is assumed to be operating as a shell. If it is provided an argument,
that argument is taken as the name of a file to read shell commands from.
Otherwise commands are read from stdin using the readline library.

2.1.1 Syntax and Data Model

The Katana shell syntax is very simple. There are no control flow structures,
only commands and variables. A line is terminated by a semicolon (;) or
a newline character. Each line may be either blank, contain exactly one
COMMAND, or contain an ASSIGNMENT.

A COMMAND is of the form COMMANDIDENTIFIER PARAM PARAM
PARAM, where tokens are seperated by spaces and the number of
PARAMs depends on the command.

An ASSIGNMENT is currently of the form VARIABLE=COMMAND
although in the future it may be possible to write other sorts of assignments.

A VARIABLE reference consists of a dollar-sign ($) followed by a letter
or underscore followed by any number of letters, underscores, or digits.

3

A COMMANDIDENTIFIER is one or more words which identify a COM-
MAND. In many cases a command is identified by only one word, but some-
times similar commands are grouped by sharing the first word in their iden-
tifier.

A PARAM is a VARIABLE reference, STRING, or NUMBER
A STRING is any literal beginning and ending with the character “.
A NUMBER is a decimal, hex, or float literal.

• Data Types

The following types of variables exist

– string

– ELF

– ELF section

– raw data

– array

2.1.2 Available Commands

• load

Usage: load FILENAME
Params: FILENAME must a string literal or variable that can be
interpreted as a string.
Function: Loads the data in the given file as an ELF object if possible.
If not, loads it as raw data.

• save

Usage: save VAR FILENAME
Params: VAR must be a variable that can be interpreted as an ELF
object or that can be interpreted as raw data. FILENAME must be a
literal or variable that can be interpreted as a string.
Function: Saves VAR to FILENAME.

• dwarfscript

4

– dwarfscript emit

Usage: dwarfscript emit [SECTION] ELF OUTFILE
Params: SECTION must be the name (string) of the section to
write as Dwarfscript. If not specified it defaults to “.ehframe”.
ELF must be an ELF object. OUTFILE must be a string with
the name of a file to write the resulting Dwarfscript to.
Function: Writes the Dwarfscript representation of the given SEC-
TION from the given ELF to OUTFILE.

– dwarfscript compile

Usage: dwarfscript compile INFILE
Params: INFILE must be a string containing the name of a file.
Function: Interprets the contents of the file named by INFILE
as Dwarfscript and compiles the Dwarfscript into beinary form.
Returns an array with 3 items 0: raw data for .ehframe 1: raw
data for .ehframehdr 2: raw data for .gccexcepttable.

• extract

– extract section

Usage: extract section ELF SECTION_NAME Params: ELF must
be an ELF object. SECTIONNAME must be a string. Function:
Returns the data and header information for the specified section

– extract sectiondata

Usage: extract section ELF SECTION_NAME Params: ELF must
be an ELF object. SECTIONNAME must be a string. Function:
Like extract section except extracts only the raw data stored in
the section and not any header information.

• replace

– replace section

Usage: replace section ELF SECTION_NAME NEW_SECTION Params:
ELF must be an ELF object. SECTIONNAME must be a string.

5

NEWSECTION must be either an ELF section or raw data. Func-
tion: Replaces the section with the name SECTIONNAME in the
oject ELF with the data from NEWSECTION. Section headers are
replaced if NEWSECTION is able to provide them, but not if it is
only raw data.

– replace raw

Usage: replace raw ELF OFFSET NEW_DATA Params: ELF must
be an ELF object. ADDRESS must be an integer. NEWDATA

must be raw data. Function: Replaces the raw data at OFFSET
in the ELF object with NEWDATA. OFFSET must refer to a
location in an existing section.

• info

– info eh

Usage: info eh ELF [OUTFILE] Params: ELF must be an ELF
object. OUTFILE, if present, must be the name of a writable file
(which may or may not exist yet). Function: Prints out informa-
tion about the exception-handling structures in ELF. If OUTFILE
is present, this information is written to it.

• hash

– hash elf

Usage: hash elf STR Params: STR must be a string. Function:
Prints the result of running elfhash (from libelf) on the string.

• patch

– gen

Usage: patch gen OLD_OBJECTS_DIR NEW_OBJECTS_DIR EXECUTABLE
Params: All three params are strings. The first two are the old
and new object file directories respectively. The last is the name

6

of the executable that can be found in both directories. Function:
Generates (and returns) a patch object ELF.

– apply

Usage: patch apply PO PID Params: The PO parameter should
be an ELF patch object. PID should be the (integer) pid of the
process that PO is to be applied to. Function: Applies the patch
object PO to the running process described by PID.

• ! (shell command)

The rest of the line following by ! is executed in a shell.

2.1.3 History

Command history is saved using libreadline in $HOME/.katana_history.

3 Hotpatching

3.1 Other Systems

There are other hotpatching systems in existence. The curious are invited
to explore Ginseng and Polus. Both of these systems parse the source code,
which adds significant complexity to them and results in significant program-
mer annotation of the code to give hints to the systems. Ginseng uses com-
plicated type-wrappers when patching variables which does not fit cleanly
with existing executables and has some impact on the performance of the
software. Ginseng is considerably more mature than Katana, however. Nei-
ther system is production ready, but Ginseng is probably closer than Katana
at the moment.

The system most like Katana in many ways is KSplice, and the curious
reader is definitely invited to investigate. KSplice patches the kernel and not
userland, does not attempt to patch variables, and creates patches as kernel
modules rather than working towards a general ELF-based patch format.

3.2 What Katana Does

• Runs on x86 and x86-64

• Generates patches for simple programs

7

• Applies simple patches

3.3 What Katana Does Not Do (Yet)

• Patch any major programs: it has not yet been demonstrated on any-
thing more than toy examples

• Provide any method to handle opaque data it cannot patch (void*,
situations where which action a user would prefer is unclear, etc)

• Patch previously patched processes

• Provide robust operation

• Run on any architectures other than x86 and x86-64

• Tested on any operating system besides GNU/Linux

• Allow for calls in patched code to previously unused functions

• Work for programs which actually make use of some of the large code
model features of the x86-64 ABI.

• And much more

See Roadmap for more things which are not complete

3.4 What Katana May Never Do

• Work on any binary formats besides ELF

3.5 How to Use Katana For Hotpatching

Katana is intended to be used in two stages. The first stage generates a patch
object from two different versions of an treee. By an object tree, we mean
the set of object files (.o files) and the executable binary they comprise.
Katana works completely at the object level, so the source code itself is
not strictly required, although all objects must be compiled with debugging
information. This step may be done by the software vendor. In the second
stage, the patch is applied to a running process. The original source trees
are not necessary during patch application, as the patch object contains all
information necessary to patch the in-memory process at the object level. It
is also possible to view the contents of a patch object in a human-readable
way for the purposes of sanity-checking, determining what changes the patch
makes, etc.

8

3.5.1 Preparing a Package for Patching Support

Katana aims to be much less invasive than other hot-patching system and
require minimal work to be used with any project. It does, however, have
some requirements.

3.5.2 Source Code Practices

Katana does not look at the source code, therefore unlike several other hot-
patching systems, it does not require any annotation in the source code.
There are, however, some best practices to follow.

• Avoid the use of void* at least for global variables (since Katana does
not currently patch local variables, preferring to wait until any func-
tions using changed variables are no longer on the stack). Since it is
typeless and opaque, it is very hard to analyze and patch.

• Avoid unnamed types. i.e., instead of typedef struct {...} Foo;
use typedef struct Foo_ {...} Foo;.

• Avoid accessing structure members by offsets instead of by the member
names. As long as you keep all the code where you do this up to date,
it should not be a problem, but katana cannot detect when you do this.

3.5.3 Compilation/Linking

Required CFLAGS:

• -g

Recommended CFLAGS:

• -ffunction-sections

• -fdata-sections

Recommended LDFLAGS:

• –emit-relocs

9

3.5.4 To Generate a Patch

Let the location of your project be /project. You must have two versions of
your software available: the version identical to the running software which
must be hotpatched, call it v0, and the version to which you wish to hotpatch
the running software, call it v1. Let foo be the name of your program. Then
/project/v0/foo must exist and /project/v0 must also contain (possibly in
subdirectories) all of the object files which contributed to /project/v0/foo.
The source code itself is immaterial, as Katana does not parse it. Similarly,
/project/v1/foo must exist and /project/v1 contain all of the object files
contributing to /project/v1/foo. Katana is then invoked as

katana [OPTIONS] -g [-o OUTPUT_FILE] /project/v0 /project/v1 foo
or more formally
katana [OPTIONS] -g [-o OUTUT_FILE] OLD_OBJECTS_DIR NEW_OBJECTS_DIR

EXECUTABLE_NAME
If -o OUTPUT_FILE is not specified, the output file will be OLD_OBJECTS_DIR/EXECUTABLE_NAME.po

3.5.5 To Apply a Patch

The process to be patched is running with a pid of PID. It can be patched
from its current version to a more recent version by the Patch Object (PO)
file PATCH. Katana is then invoked as

katana [OPTIONS] -p [-s] PATCH PID
If all goes well, the patcher will run, print out some status messages, and

leave your program in better state than it found it. The optional -s flag tells
Katana to stop the target program after patching it and detaching from it.
This is mostly of use for debugging Katana.

3.5.6 To View a Patch

One of the goals of Katana and its Patch Object (PO) format is to increase
the transparency of patches: a user about to apply a patch should know
what it will do. This goal is not yet fully realized, but it is possible to view
some information about a patch with

katana [OPTIONS] -l PATCH

3.5.7 Options

The following options may be passed to katana regardless of whether one is
generating, applying, or viewing a patch:

• -c CONFIG where CONFIG is the name of a configuration file to load

10

3.5.8 Configuration Files

Note that this feature is a work in progress. There isn’t much you can do
with configuration files right now and the information here may be out of
date. Please do not rely on it.

Katana loads configuration files as follows. Configuration files loaded
later in the sequence may overwrite settings from files earlier in the sequence.

• etc/katana + ˜.katana

• ˜/.config/katana

• ./katana

• any file specified with -c

Configuration files are written in JSON. The JSON requirement that strings
be quoted is relaxed (i.e. anything is assumed to be a string unless it can be
interpreted otherwise). The following properties are recognized:

• maxWaitForPatching <INTEGER> This value specifies the maximum
number of seconds to wait for the target to enter a safe state.

• flags <OBJECT> The value of flags should be an object which may
contain the following properties, all of which should be bool-valued:

– checkPtraceWrites Whenever something is written into the target
memory, read the value back out and verify that it was written
correctly. This has a performance penalty, but does provide some
more robust error checking, although it should not be necessary.

3.5.9 See Also

• The katana manpage (although the information in this document is
considerably more extensive than in the manpage)

• S. Bratus, J. Oakley, A. Ramaswamy, S. Smith, M. Locasto. Katana:
Towards Patching as a Runtime part of the Compiler-Linker-Loader
Toolchain. International Journal of Secure Software Engineering (IJSEE).
1, 3 (2010).

11

3.6 Patch Object Format

We have developed a patch object (PO) format which we hope will eventually
pave the way for a standardized vendor-neutral patch format for hotpatching.
We are not advancing our format as such, but it embodies some of the
principles which we think are important. Why should patching not be a
part of the ABI and of the standard toolchain?

• A PO is a valid ELF file.

• A PO utilizes DWARF information to describe types, variables, and
functions requiring patching.

• A PO allows type transformations to be specified using a language
based on the DWARF standard.

Through the use of existing standards and well-structured ELF files utilizing
a simple expression language for data patching, we aim to create patches that
are easily examined (or modified) with existing tools. Relocatable objects
containing new code and data which may be inserted at runtime are nothing
new. This is the entire premise of the dynamic library. User-written func-
tions which may have this code injection (in the case of patching data where
the desired actions cannot be determined automatically) already exist as the
.init and .fini sections. It is our view, however, that it is important to have a
seperate patch format as opposed to patches merely being dynamic libraries
which contain both the patch data and the logic to perform the patching (as
is done by some other hotpatching systems). We view this as an unnecessary
mixing of data and logic. The code to apply patches should live in one place
on any given system, as most other executable content does.

As an ELF object, our PO files contain the following non-standard sec-
tions.

• .text.new Contains new/modified functions

• .rodata.new, .data.new new data

• .unsafefunctions Contains a simple listing (of symbol indices) of the func-
tions in the binary to be patched which should not have activation
records on the stack when patching is taking place.

• .debuginfo Contains listings of the variables and functions which need
to be patched using the DWARF data format. This section is standard
and is used here with validly formatted data, but is used for patching

12

instead of debugging. The use of the the .debug_ name is preserved
for compatibility with libdwarf and tools such as readelf, objdump,
dwarfdump capable of listing DWARF information. It can be, however,
confusing and the name will likely change in the future.

• .debugframe Like .debuginfo a standard section used in a nonstandard
way, see notes above about the naming. Contains an extended version
of DWARF Call Frame Information which describes how various data
structures are to be patched. The details are not properly documented
at the moment, please email the Authors for more details if you would
like further information.

3.7 Patch Generation Process

This section of the document is still under construction, but we hope that
the information that is provided will be of some use.

3.8 Configuration

Note that this feature is a work in progress. There isn’t much you can do
with configuration files right now.

Katana reads configuration files from (in order, with later configuration
files overriding options found in earlier ones) from /etc/katana, ~/.katana,
~/.config/katana, and ./.katana.

3.9 Initializing the patch object

Katana sets up a patch object ELF file with the necessary sections, see Patch
Object Format

3.10 Comparing source trees

High level view:

• Katana compare the old and new source trees, looking at the object
(.o) files.

• For object files which exist only in the new tree, their contents are
added to the patch object being created.

• For object files which exist only in the old tree, a warning about their
removal is issued and nothing further is done.

13

• For object files which exist in both trees, type diffing and function
diffing are performed and the differences are written tot he patch object
being created.

A more detailed (although still very rough) algorithm:

Walk the old and new object trees in parallel
For each pair of objects (corresponding old and new objects)

If the new object does not exist
Issue a warning and continue

If the old object does not exist
Add all functions and vars to patch
Continue

If the two objects are the same
Continue

If the two objects differ
For every global variable in the old object

Compare with matching variable in the new object
If the two are a different type or the type struct changes

Generate a type transformation for the patch
If the variable initializers changed

If the variable is const
Add new data to the patch

Else
Generate a warning (can’t determine automatically if

the change should be applied)
If anything related to the variable changed

Find all functions using the variable
Add them to the unsafe functions list

For every global variable only in the new object
Add it to the patch

For every function in the old object
Compare with matching function in the new object

If the functions differ
Add the new text to the patch
Add the function to the unsafe functions list.

For ever function only in the new object
Add the function to the patch

Write out the patch ELF!

14

3.11 Type Diffing

The general idea is that structures are examined for for added members,
moved members, and changed members. If you need more detail than this,
please contact the Authors.

3.12 Function Diffing

Functions are compared in an unsophisticated manner. The comparison is
essentially byte-by-byte (i.e. no parsing of the machine instruction set is
done). If bytes differ between the compiled version of the old function and
the new function, then the function is assumed to need patching. The one
exception to this is that relocations are accounted for. If bytes differ at an
address that is fixed up by relocations, the relocations are examined to make
sure that they are for the same symbol. If in fact they are, then the function
is deemed not to have changed. If the symbol referred to corresponds to
a variable that has changed then it may need to be moved to be patched.
In that event the function may in fact have to be modified, but it will be
modified only to apply the relocations rather than as a patch to the function
per se and thus the function diffing stage does not concern itself with whether
referenced symbols have changed.

3.13 Patch Application Process

This section of the document is not yet written. It will provide a description
of the internal process that Katana uses to apply a patch. Understanding it
is not necessary for using Katana.

The basic process is as follows

Read the patch file
Calculate versioning. This is currently not implemented.
Find malloc in the target, as we may need it
Calculate a safe state for the target (based on the unsafe functions list)
Wait for the target to reach a safe state
Map in necessary sections from the patch
Copy PLT and GOT to new locations as we may need to expand them
For each variable listed in the patch

Apply the variable patch
For each function listed in the patch
Apply the function patch

Apply necessary relocations

15

3.14 Roadmap

This section is highly incomplete. Future goals include

• Better interaction with the heap and dynamically allocated variables

• Better interaction with void*

• More efficient use of .rodata

• Patching already patched processes

• Patch composition

• Patch safety checking: make sure a patch actually corresponds to the
process it’s being applied to

• Storing warnings from generation inside a patch

4 DWARF Manipulation

For information on how katana can be used specifically for DWARF manip-
ulation, please see Dartmouth College Tech Report TR2011-680.

5 Credits and Licensing

Katana is under development at Dartmouth College and Copyright 2010
Dartmouth College. It may be distributed under the terms of the GNU
General Public License with attribution to Dartmouth College as specified
in the file COPYING distributed with Katana. This document is Copyright
2010-2011 Dartmouth College and may be distributed under the terms of
the GNU Free Documentation License as found in the file FDL which should
have been distributed with this documentation. If it was not, it may be
found at http://www.gnu.org/licenses/fdl.txt.

Katana is being written by James Oakley and was designed by Sergey
Bratus, James Oakley, Ashwin Ramaswamy, Michael Locasto, and Sean
Smith.

16

http://www.gnu.org/licenses/fdl.txt

	Introduction
	General Usage Information
	Shell
	Syntax and Data Model
	Available Commands
	History

	Hotpatching
	Other Systems
	What Katana Does
	What Katana Does Not Do (Yet)
	What Katana May Never Do
	How to Use Katana For Hotpatching
	Preparing a Package for Patching Support
	Source Code Practices
	Compilation/Linking
	To Generate a Patch
	To Apply a Patch
	To View a Patch
	Options
	Configuration Files
	See Also

	Patch Object Format
	Patch Generation Process
	Configuration
	Initializing the patch object
	Comparing source trees
	Type Diffing
	Function Diffing
	Patch Application Process
	Roadmap

	DWARF Manipulation
	Credits and Licensing

