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Abstract

Suppose the default claim severity distribution is a finite mixture of simpler severity
distributions. For instance, many ISO distributions are mixed exponentials. The tech-
nique in this paper can be used to adjust the weights of the mixture in a principled
way to partially-credible observed claim severities.

In Bayesian terminology, this paper assumes a Dirichlet distribution over initial
mixture weights. The posterior distribution, conditional on one or more observed claim
severities, is computed using either a custom Gibbs sampler or the runjags package.

1 Introduction

Many applications require the position of modeling claim severities based on limited historical
data. One example is the pricing an excess of loss reinsurance layer.

The technique in this paper is intended to help cover the awkward middle ground between
having no data and having lots of data. If no claim data is available, some default claim sever-
ity distribution may be available. For instance, ISO publishes mixed exponential severity
distributions based on aggergate data (see Palmer for a basic description of ISO’s methodol-
ogy). When many data points are available, maximum-likelihood curve fitting methods like
ISO’s method work well.

Intuitively, it seems the expected claim severity distribution should morph from the
default distribution into some fitted distribution as more and more claims are observed. The
most principled way of doing this is to use Bayesian statistics.

This paper models this situation under these assumptions:

1. The default severity distribution is a mixed exponential (such as those supplied by
ISO). Other mixed distributions would probably work with minor modifications.

2. Parameter uncertainty is modeled using a Dirichlet distribution over the mixture
weights. This requires one additional parameter, interpreted as the confidence in the
default distribution.
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2 REQUIRED INPUT DATA

3. The posterior distribution is computing using standard Bayesian updating on observed
claim severities.

The numerical results of this technique can be computed quickly using Gibbs sampling, a
Monte Carlo Markov Chain (MCMC) method. The output can be summarized as a new set
of mixture weights for use however the actuary would use the original default distribution.

2 Required input data

Three initial inputs are required. The weights and means of the default severity distribution
are shown in figure 1.

Weights
(%) Means

10.0 300
20.0 1,000
30.0 3,000
20.0 10,000
10.0 30,000
5.0 100,000
3.5 300,000
1.0 1,000,000
0.5 3,000,000

Avg 46,630

Figure 1: Default Mixed Exponential

Second, we need to know how confident the actuary is in these initial weights. Does the
actuary think that the“true”distribution is almost certainly close to the default distribution?
Or is it probable that the true distribution is much bigger or smaller than the default?
Specifying this is equivalent to specifying the variance of the hypothetical means in Buhlmann
credibility.

The value used for the standard deviation of the expectation is 50000.

Finally, we need to know the claims to update the distribution on. These are shown in
figure 2.
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3 THE ANSWER

Amount

500,000
32,500
8,200

10,000
750,000

Figure 2: Claim Severities

3 The answer

Given the numerical data in the previous section and the modeling assumptions described
in the introduction, we can compute the posterior weights.

Prior to Data Posterior to Data

Weight (%) Mean Weight (%) Error (%) Mean

10.0 300 8.3 0.23 300
20.0 1,000 16.6 0.31 1,000
30.0 3,000 26.7 0.38 3,000
20.0 10,000 20.8 0.36 10,000
10.0 30,000 10.8 0.28 30,000
5.0 100,000 5.3 0.20 100,000
3.5 300,000 8.5 0.27 300,000
1.0 1,000,000 2.4 0.17 1,000,000
0.5 3,000,000 0.7 0.08 3,000,000

Avg 46,630 Avg 82,854

Figure 3: Results of Bayesian Updating

Due to computational difficulties (see section 5), the posterior weights are only approximated.
Figure 3 shows the new weights and estimates the approximation error. The means remain
the same as required by the model. Figure 4 shows the difference graphically. This graph
shows both the change in weights and the change in densities. The observed claims are
shown using vertical lines.
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4 DETAILED MODEL
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Figure 4: Graph of Results

4 Detailed model

Formally, the Bayesian probabilistic model used is defined by these equations:

p(x|b) =
ex/µb

µb
(1)

p(b|w1, . . . , wm) = wb (2)

p(w1, . . . , wm) =
Γ(
∑m

j=1 αj)∏m
j=1 Γ(αj)

m∏
j=1

w
αj−1
j with wm = 1−

m−1∑
j=1

wj (3)

or in other words,

x|b ∼ Exponential(1/µb)

b|w1, . . . , wm ∼ Categorical(w1, . . . , wm)

w1, . . . , wm ∼ Dirichlet(α1, . . . , αm)

where x is an individual claim severity and µb is the expected value of exponential distribution
b. x and bucket selection b are assumed independent given the bucket weights (w1, . . . , wm).
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4.1 The Dirichlet and choosing α 4 DETAILED MODEL

α1, . . . , αm are hyperparameters—they control the initial prior distribution over the possible
bucket weights, but are not given probabilities themselves.

The model’s marginal distribution over claim severities is then

p(x) =
m∑
b=1

∫
p(x|b)p(b|w)p(w) dw

=
m∑
b=1

∫
p(x|b)wbp(w) dw

=
m∑
b=1

(

∫
wbp(w) dw)p(x|b)

=
m∑
b=1

E[wb]p(x|b) (4)

where w = w1, . . . , wm. Thus as long as we choose α1, . . . , αm so that E[wj] = aj where aj
is our default weight for bucket j, our model will imply the correct marginal claim severity
distribution before any data is observed.

4.1 The Dirichlet and choosing α

The Dirichlet is the multidimensional analogue of the beta distribution. Just as the beta
distribution can be used to express uncertainty about two numbers which must add to 1,
the Dirichlet can express uncertainty about m positive numbers that must add to 1. This
property makes it popular in Bayesian analysis (see Mildenhall for an example).

It is a property of the Dirichlet distribution that if w1, . . . , wm ∼ Dirichlet(α1, . . . , αm),
then

E[wj] =
αj
α0

(5)

Var[wj] =
αj(α0 − αj)
α2
0(α0 + 1)

=
E[wj](1− E[wj])

(α0 + 1)
(6)

Cov[wj, wk] =
−αjαk

α2
0(α0 + 1)

=
−E[wj]E[wk]

α0 + 1
for j 6= k (7)

where α0 =
∑m

j=1 αj. Because we are given the initial default weights aj = E[wj], the choice
of α0 will uniquely determine α1, . . . , αm. As in the beta distribution, the larger the sum of
the parameters α0, the more certain we are of the “true” weights.

Almost any statement about parameter risk, or about the uncertainty of the true distri-
bution, will determine a value for α0. Furthermore, with a Dirichlet distribution many of
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4.2 Why not vary the means? 4 DETAILED MODEL

these will be analytically tractical. In this paper, we assume that the uncertainty (measured
in terms of standard deviation) of the true (unlimited) expected claim severity is given as σ.
Using equations (6) and (7) we get

σ2 = Var[E[x|w1, . . . , wm]]

= Var[
m∑
j=1

wjµj]

=
m∑
j=1

µ2
jVar[wj] +

∑
j 6=k

µjµkCov[wj, wk]

=
m∑
j=1

µ2
j

E[wj](1− E[wj])

α0 + 1
+
∑
j 6=k

µjµk
−E[wj]E[wk]

α0 + 1

=
m∑
j=1

µ2
j

aj(1− aj)
α0 + 1

+
∑
j 6=k

µjµk
−ajak
α0 + 1

hence

α0 =
1

σ2
(
m∑
j=1

µ2
jaj(1− aj)−

∑
j 6=k

µjµkajak)− 1. (8)

Equation (8) was used above to determine the initial Dirichlet paramaters. Specifically,
the chosen value for σ, 50000, implies that α0 = 22.99562564.

The behavior of the Dirichlet/multinomial conjugate pair under Bayesian updating sug-
gests this interpretation of α0: our prior distribution contains an amount of information
equivalent to α0 claims (see Hoff p.39). For instance, if α0 = 5, then prior to the data, we
have about as much information as someone would have after seeing 5 claims. Although this
idea is logically nonsensical, it does provide a rough-and-ready guide to the influence the
data will have on the posterior weights. For instance, if α0 = 5, then after conditionalization
on 5 claims, the data and our prior beliefs will have about equal credibility.

4.2 Why not vary the means?

It may seem more practical to allow the means of the exponential distributions to vary with
observed claims. The reason this paper only adjusts the weights is that this allows the correct
default distribution to be used when there are no claims. Equation (4) shows that the prior
marginal distribution will correctly equal the default distribution as long as the expected
weights are equal to the desired default weights. However, there is no similar way to do this
by varying the means.
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5 COMPUTING THE ANSWER

For example, suppose desired claim severity is an equally-weighted mixed exponetial of
means 100 and 300:

p(x) = 0.5
ex/100

100
+ 0.5

ex/300

300
.

Then p(x) can be expressed as the weighted mixture of various other mixtures of exponentials
with means 100 and 300, such as:

p(x) =
1

2
(0.25

ex/100

100
+ 0.75

ex/300

300
) +

1

2
(0.75

ex/100

100
+ 0.25

ex/300

300
)

However, it is impossible to express p(x) as a (positive) mixture of exponentials with
means other than 100 or 300. Thus if we know that the true distribution is a mixed expo-
nential, and if we know the form of p(x) as is above, then our modeled uncertainty must
only concern the weights of the mixed exponential.

5 Computing the answer

Given the model described in equations (1)–(3) and n observed claim severities c1, . . . , cn, it
is simple in principle to compute the posterior marginal distribution:

p(x|c1, . . . , cn) =
m∑
b=1

∫
p(x|b, c1, . . . , cn)p(b|w, c1, . . . , cn)p(w|c1, . . . , cn) dw (9)

=
m∑
b=1

∫
p(x|b)p(b|w)p(w|c1, . . . , cn) dw (10)

=
m∑
b=1

E[wb|c1, . . . , cm]p(x|b). (11)

However, straightforwardly computing (10) is difficult, even when a simple distribution like
the exponential is used. Interestingly, (10) is analytically soluble, but the number of terms
is O(mn) so this tact is infeasible.

Instead, the posterior marginal weights E[wb|c1, . . . , cm] can be computed quickly using
Gibbs sampling. The logic behind this procedure is relatively complicated and won’t be
described here (see Hoff, chapter 6) but the implementation is only about a dozen lines of
code.

An MCMC technique like Gibbs sampling was chosen here because the dimensionality
of integral (10) makes numerical integration very time-consuming. A straightforward Monte
Carlo method was also tried. It was as accurate and ran faster when the posterior was close
to the prior, but became very inaccurate when large numbers of observed claims moved the
posterior far away from the prior.
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